gophernotes 项目教程
1. 项目介绍
gophernotes 是一个用于 Jupyter notebooks 和 nteract 的 Go 内核。它允许用户在基于浏览器的笔记本或桌面应用程序中交互式地使用 Go 语言。通过 gophernotes,用户可以创建和分享包含实时 Go 代码、方程、可视化和解释性文本的文档。这些笔记本可以与其他人通过电子邮件、Dropbox、GitHub 和 Jupyter Notebook Viewer 共享。
gophernotes 项目的主要目标是提供一个可靠且易于维护的方式,让用户能够在浏览器中使用 Go 语言进行交互式编程和数据科学工作。
2. 项目快速启动
2.1 安装前提
在开始之前,请确保您的系统满足以下要求:
- Go 1.13+
- Jupyter Notebook 或 nteract
- git
2.2 快速安装
2.2.1 使用 Docker 安装
如果您想快速体验 gophernotes,可以使用 Docker 进行安装:
docker run -it -p 8888:8888 gopherdata/gophernotes
2.2.2 本地安装(Linux/FreeBSD)
- 安装 gophernotes:
go install github.com/gopherdata/gophernotes@v0.7.5
- 创建内核配置目录:
mkdir -p ~/local/share/jupyter/kernels/gophernotes
cd ~/local/share/jupyter/kernels/gophernotes
- 复制内核配置文件:
cp "$(go env GOPATH)"/pkg/mod/github.com/gopherdata/gophernotes@v0.7.5/kernel/* .
chmod +w ./kernel.json
sed "s|gophernotes|$(go env GOPATH)/bin/gophernotes|" < kernel.json > kernel.json
2.3 启动 Jupyter Notebook
完成安装后,启动 Jupyter Notebook:
jupyter notebook
在 Jupyter Notebook 中,选择 "Go" 内核即可开始使用 gophernotes。
3. 应用案例和最佳实践
3.1 数据科学
gophernotes 非常适合用于数据科学工作。用户可以在 Jupyter Notebook 中编写 Go 代码,进行数据分析、可视化和机器学习。例如,可以使用 Go 的 gonum 库进行矩阵运算,或者使用 golearn 库进行机器学习模型的训练和评估。
3.2 交互式编程
gophernotes 提供了一个交互式的编程环境,用户可以在其中编写和运行 Go 代码片段。这对于学习和调试 Go 代码非常有用。例如,用户可以在笔记本中逐步执行代码,观察每一步的输出结果。
3.3 教学和演示
gophernotes 还可以用于教学和演示。教师可以在 Jupyter Notebook 中编写包含解释性文本和代码的文档,然后与学生共享。学生可以通过运行代码来理解概念,并进行实验。
4. 典型生态项目
4.1 gonum
gonum 是一个用于数值计算的 Go 库,提供了矩阵、统计、优化等功能。在 gophernotes 中,用户可以方便地使用 gonum 进行数据分析和科学计算。
4.2 golearn
golearn 是一个用于机器学习的 Go 库,提供了各种机器学习算法和工具。用户可以在 gophernotes 中使用 golearn 进行机器学习模型的训练和评估。
4.3 gomacro
gomacro 是一个 Go 语言的交互式解释器,gophernotes 使用 gomacro 作为其底层引擎来执行 Go 代码。gomacro 支持大多数 Go 语言特性,并提供了一些扩展功能,如宏和自定义命令。
通过这些生态项目,gophernotes 为用户提供了一个强大的工具集,用于在 Jupyter Notebook 中进行 Go 语言的交互式编程和数据科学工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00