LangChain-KR项目中Few-Shot Prompt模板的代码顺序优化分析
2025-07-10 16:24:46作者:虞亚竹Luna
在自然语言处理领域,Few-Shot Prompting(少样本提示)是一种重要的技术手段,它通过提供少量示例来引导语言模型更好地理解任务要求。最近在LangChain-KR开源项目中,发现了一个关于Few-Shot Prompt模板实现细节的代码顺序问题,这个发现对于提升提示工程的准确性具有重要意义。
问题背景
Few-Shot Prompting的核心思想是通过展示几个输入-输出示例,让语言模型"学习"到任务的处理模式。在LangChain框架中,ExampleSelector组件负责从示例库中选取最相关的示例来构建提示模板。
原问题分析
在项目CH02章节的Few-Shot Prompt实现中,存在一个代码逻辑顺序问题:
- 原始代码先调用select_examples方法选择示例
- 然后再定义question变量
这种顺序会导致示例选择时question变量尚未定义,可能引发错误或导致示例选择不准确。
修正方案
正确的实现顺序应该是:
- 首先明确定义问题语句(question)
- 然后基于这个问题从示例库中选择最相关的示例
这种顺序调整确保了:
- 变量使用的安全性
- 示例选择的相关性
- 代码逻辑的清晰性
技术意义
这个看似简单的顺序调整实际上反映了提示工程中的一个重要原则:明确的上下文定义应先于任何基于上下文的选择或处理操作。在Few-Shot Prompting中,示例的选择质量直接影响模型的表现,因此确保选择过程基于完整、正确的上下文信息至关重要。
最佳实践建议
基于这个案例,我们总结出以下Few-Shot Prompting的实现建议:
- 始终先完整定义输入上下文
- 确保示例选择器接收完整、正确的输入
- 保持代码逻辑与业务逻辑的一致性
- 特别注意变量作用域和生命周期
这个优化案例虽然简单,但体现了开源社区协作完善技术细节的价值,也展示了提示工程中严谨性的重要性。对于刚接触Few-Shot Prompting的开发者来说,理解这类实现细节有助于构建更健壮、更有效的提示模板。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178