LangChain-KR项目中Few-Shot Prompt模板的代码顺序优化分析
2025-07-10 13:30:02作者:虞亚竹Luna
在自然语言处理领域,Few-Shot Prompting(少样本提示)是一种重要的技术手段,它通过提供少量示例来引导语言模型更好地理解任务要求。最近在LangChain-KR开源项目中,发现了一个关于Few-Shot Prompt模板实现细节的代码顺序问题,这个发现对于提升提示工程的准确性具有重要意义。
问题背景
Few-Shot Prompting的核心思想是通过展示几个输入-输出示例,让语言模型"学习"到任务的处理模式。在LangChain框架中,ExampleSelector组件负责从示例库中选取最相关的示例来构建提示模板。
原问题分析
在项目CH02章节的Few-Shot Prompt实现中,存在一个代码逻辑顺序问题:
- 原始代码先调用select_examples方法选择示例
- 然后再定义question变量
这种顺序会导致示例选择时question变量尚未定义,可能引发错误或导致示例选择不准确。
修正方案
正确的实现顺序应该是:
- 首先明确定义问题语句(question)
- 然后基于这个问题从示例库中选择最相关的示例
这种顺序调整确保了:
- 变量使用的安全性
- 示例选择的相关性
- 代码逻辑的清晰性
技术意义
这个看似简单的顺序调整实际上反映了提示工程中的一个重要原则:明确的上下文定义应先于任何基于上下文的选择或处理操作。在Few-Shot Prompting中,示例的选择质量直接影响模型的表现,因此确保选择过程基于完整、正确的上下文信息至关重要。
最佳实践建议
基于这个案例,我们总结出以下Few-Shot Prompting的实现建议:
- 始终先完整定义输入上下文
- 确保示例选择器接收完整、正确的输入
- 保持代码逻辑与业务逻辑的一致性
- 特别注意变量作用域和生命周期
这个优化案例虽然简单,但体现了开源社区协作完善技术细节的价值,也展示了提示工程中严谨性的重要性。对于刚接触Few-Shot Prompting的开发者来说,理解这类实现细节有助于构建更健壮、更有效的提示模板。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
暂无简介Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44