MKVToolNix 开源项目下载与安装教程
项目介绍
MKVToolNix 是一套用于创建和处理 Matroska 文件的工具集,Matroska 是一种开源的多媒体容器格式,旨在成为未来的新标准。MKVToolNix 提供的工具包括获取 Matroska 文件信息的 mkvinfo、从 Matroska 文件中提取轨道/数据的 mkvextract 以及从其他媒体文件创建 Matroska 文件的 mkvmerge 等。
项目下载位置
项目可以在 GitHub 上找到,具体网址为:
***
您可以通过点击上述链接直接下载或使用 Git 命令克隆仓库:
git clone ***
项目安装环境配置
在开始安装 MKVToolNix 之前,确保您的系统满足以下基本要求:
- C++ 编译器,支持 C++11 标准的特性。
- libebml 和 libmatroska 库,用于低级访问 Matroska 文件。
- expat 解析库。
- libOgg 和 libVorbis 库,用于访问 Ogg/OGM 文件和 Vorbis 支持。
- zlib 压缩库。
- Boost 库。
- rake 或 drake 构建程序,或至少需要 Ruby 语言及其 gems 包。
环境配置时建议安装“drake”,因为它能利用所有可用的 CPU 核心进行并行构建。以 Root 用户安装“drake”命令如下:
gem install drake
以下是配置示例截图(由于环境限制,此处无法提供真实图片,请在实际操作时按照文档进行)。
项目安装方式
安装 MKVToolNix 有几种方式,您可以选择适合您的方法:
1. 使用预编译的发布版本
直接下载当前发布的压缩包并解压,然后按照官方文档安装。
2. 从源码编译安装
首先需要构建 libebml 和 libmatroska 库:
cd libebml/make/linux
make staticlib
make install_headers install_staticlib
cd ../libmatroska/make/linux
make staticlib
make install_headers install_staticlib
然后下载 MKVToolNix 源码并构建:
git clone ***
***
***
***
***
***
如果您使用的是系统自带的 rake,或者在安装 MKVToolNix 时没有使用系统管理员权限,需要在命令前加上路径:
/rake-d/bin/drake
/rake-d/bin/drake install
3. 使用 Drake 进行并行安装
Drake 程序支持并行构建,您可以使用 -j 参数指定并行数量:
drake -j4
或者设置环境变量 DRAKETHREADS:
export DRAKETHREADS=4
drake
项目处理脚本
MKVToolNix 包含一些处理脚本,例如:
mkvmerge:合并媒体文件到 Matroska 容器。mkvinfo:获取 Matroska 文件的信息。mkvextract:从 Matroska 文件中提取轨道或数据。
要使用这些脚本,需要确保它们在系统的 PATH 环境变量中:
export PATH=/path/to/mkvtoolnix/bin:$PATH
安装完成后,您可以通过在命令行中输入相应的脚本名称来使用这些工具。
本文档假设您有一定的 Linux/Unix 系统操作知识,并且能够根据实际情况调整上述命令中的路径等参数。安装过程中如遇到问题,请参考 MKVToolNix 官方文档或在官方支持论坛寻求帮助。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00