MKVToolNix 开源项目下载与安装教程
项目介绍
MKVToolNix 是一套用于创建和处理 Matroska 文件的工具集,Matroska 是一种开源的多媒体容器格式,旨在成为未来的新标准。MKVToolNix 提供的工具包括获取 Matroska 文件信息的 mkvinfo、从 Matroska 文件中提取轨道/数据的 mkvextract 以及从其他媒体文件创建 Matroska 文件的 mkvmerge 等。
项目下载位置
项目可以在 GitHub 上找到,具体网址为:
***
您可以通过点击上述链接直接下载或使用 Git 命令克隆仓库:
git clone ***
项目安装环境配置
在开始安装 MKVToolNix 之前,确保您的系统满足以下基本要求:
- C++ 编译器,支持 C++11 标准的特性。
- libebml 和 libmatroska 库,用于低级访问 Matroska 文件。
- expat 解析库。
- libOgg 和 libVorbis 库,用于访问 Ogg/OGM 文件和 Vorbis 支持。
- zlib 压缩库。
- Boost 库。
- rake 或 drake 构建程序,或至少需要 Ruby 语言及其 gems 包。
环境配置时建议安装“drake”,因为它能利用所有可用的 CPU 核心进行并行构建。以 Root 用户安装“drake”命令如下:
gem install drake
以下是配置示例截图(由于环境限制,此处无法提供真实图片,请在实际操作时按照文档进行)。
项目安装方式
安装 MKVToolNix 有几种方式,您可以选择适合您的方法:
1. 使用预编译的发布版本
直接下载当前发布的压缩包并解压,然后按照官方文档安装。
2. 从源码编译安装
首先需要构建 libebml 和 libmatroska 库:
cd libebml/make/linux
make staticlib
make install_headers install_staticlib
cd ../libmatroska/make/linux
make staticlib
make install_headers install_staticlib
然后下载 MKVToolNix 源码并构建:
git clone ***
***
***
***
***
***
如果您使用的是系统自带的 rake,或者在安装 MKVToolNix 时没有使用系统管理员权限,需要在命令前加上路径:
/rake-d/bin/drake
/rake-d/bin/drake install
3. 使用 Drake 进行并行安装
Drake 程序支持并行构建,您可以使用 -j 参数指定并行数量:
drake -j4
或者设置环境变量 DRAKETHREADS:
export DRAKETHREADS=4
drake
项目处理脚本
MKVToolNix 包含一些处理脚本,例如:
mkvmerge:合并媒体文件到 Matroska 容器。mkvinfo:获取 Matroska 文件的信息。mkvextract:从 Matroska 文件中提取轨道或数据。
要使用这些脚本,需要确保它们在系统的 PATH 环境变量中:
export PATH=/path/to/mkvtoolnix/bin:$PATH
安装完成后,您可以通过在命令行中输入相应的脚本名称来使用这些工具。
本文档假设您有一定的 Linux/Unix 系统操作知识,并且能够根据实际情况调整上述命令中的路径等参数。安装过程中如遇到问题,请参考 MKVToolNix 官方文档或在官方支持论坛寻求帮助。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00