Narwhals v1.43.0 版本发布:新增统计函数与API优化
Narwhals 是一个专注于数据处理的Python库,它提供了统一的数据操作接口,可以兼容多种后端计算引擎。该项目旨在简化数据分析工作流,让开发者能够用一致的API处理不同计算框架下的数据。
核心功能增强
本次发布的v1.43.0版本在统计计算能力方面有显著提升:
-
新增kurtosis峰度计算:现在Expr和Series对象都支持kurtosis方法,用于计算分布的峰度值。峰度是描述数据分布形态陡缓程度的重要统计量,在金融风险分析、信号处理等领域有广泛应用。
-
新增sqrt平方根计算:同样在Expr和Series上新增了sqrt方法,提供便捷的平方根运算能力。这个看似简单的数学运算在数据标准化、距离计算等场景中非常实用。
API改进与优化
-
get_level方法弃用:从主命名空间中移除了nw.get_level方法,这是API清理工作的一部分。开发者需要注意检查代码中是否使用了该方法,并寻找替代方案。
-
类型检查优化:当向nw.dependencies.is_dataframe和nw.dependencies.is_series传递narwhals对象时,现在会提供更清晰的错误信息或警告,帮助开发者更快定位问题。
测试与文档完善
-
Kleene逻辑文档:新增了关于布尔列Kleene逻辑的测试和文档说明。Kleene逻辑是三值逻辑系统,在处理包含null/NA值的布尔运算时特别重要。
-
测试性能优化:针对test_rolling_var_hypothesis_polars测试用例,取消了too_slow标记,提升了测试套件的执行效率。
内部架构改进
-
代码清理:移除了多个未使用的工具函数,保持代码库的简洁性。
-
命名空间转换简化:重构了Implementation.to_native_namespace的实现,使其更加简洁高效。这项改进虽然对终端用户不可见,但有助于提升库的整体性能和可维护性。
这个版本的发布体现了Narwhals项目在功能丰富性和代码质量上的持续投入。新增的统计函数扩展了数据分析能力,而API的优化则提升了开发体验。对于数据科学工作者来说,这些改进使得在统一接口下处理不同计算引擎的数据变得更加便捷可靠。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00