Rubicon-ML 开源项目教程
2024-09-17 20:51:48作者:霍妲思
1. 项目介绍
Rubicon-ML 是一个数据科学工具,旨在捕获和存储模型训练和执行信息,如参数和结果,以实现可重复和可搜索的方式。它通过 Git 集成将这些输入和输出直接与生成它们的模型代码关联,确保开发者和利益相关者都能实现完全的审计性和可重复性。在实验过程中,Rubicon-ML 的仪表盘使得探索、过滤、可视化和共享记录的工作变得容易。
2. 项目快速启动
安装
Rubicon-ML 可以通过 Conda 或 Pip 安装。
使用 Conda 安装
conda config --add channels conda-forge
conda install rubicon-ml
使用 Pip 安装
pip install rubicon-ml
快速启动示例
以下是一个简单的示例,展示如何使用 Rubicon-ML 记录模型训练信息。
from rubicon_ml import Rubicon
# 初始化 Rubicon
rubicon = Rubicon(persistence="filesystem", root_dir="/rubicon-root", auto_git_enabled=True)
# 创建项目
project = rubicon.create_project("Hello World", description="Using rubicon to track model results over time")
# 记录实验
experiment = project.log_experiment(
training_metadata=[SklearnTrainingMetadata("sklearn.datasets", "my-data-set")],
model_name="My Model Name",
tags=["my_model_name"]
)
# 记录参数
experiment.log_parameter("n_estimators", n_estimators)
experiment.log_parameter("n_features", n_features)
experiment.log_parameter("random_state", random_state)
# 记录指标
accuracy = rfc.score(X_test, y_test)
experiment.log_metric("accuracy", accuracy)
# 运行仪表盘
rubicon_ml ui --root-dir /rubicon-root
3. 应用案例和最佳实践
应用案例
Rubicon-ML 可以用于各种数据科学项目,特别是在需要记录和追踪模型训练过程的场景中。例如,在机器学习模型的开发过程中,Rubicon-ML 可以帮助记录每次训练的参数、结果和元数据,确保实验的可重复性和可审计性。
最佳实践
- 自动化记录:在模型训练脚本中集成 Rubicon-ML,自动记录每次训练的参数和结果。
- 版本控制:利用 Rubicon-ML 的 Git 集成功能,确保每次实验的代码版本与记录的数据关联。
- 可视化分析:使用 Rubicon-ML 的仪表盘功能,快速分析和比较不同实验的结果,找出最佳模型配置。
4. 典型生态项目
Rubicon-ML 可以与其他数据科学和机器学习工具集成,形成强大的生态系统。以下是一些典型的生态项目:
- Scikit-learn:Rubicon-ML 可以与 Scikit-learn 集成,记录和追踪 Scikit-learn 模型的训练过程。
- Prefect:通过 Prefect 任务,Rubicon-ML 可以与 Prefect 工作流集成,实现自动化模型训练和记录。
- Jupyter Notebooks:Rubicon-ML 可以与 Jupyter Notebooks 结合使用,方便在交互式环境中记录和分析模型训练数据。
通过这些集成,Rubicon-ML 可以帮助数据科学家和机器学习工程师更高效地管理和分析模型训练过程。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210