Zizmor项目中发现复合动作模板注入问题的案例分析
问题背景
在GitHub Actions的复合动作(composite action)使用过程中,存在一种常见的安全风险——模板注入问题。这类问题通常发生在YAML配置文件中,当用户输入被直接嵌入到shell命令中执行时,可能通过精心构造的输入参数执行非预期代码。
问题详情
在审查一个使用Zizmor工具进行安全审计的项目时,发现了复合动作文档中存在模板注入风险。具体表现为在mike-docs动作中,有三个用户输入参数(inputs.push、inputs.alias和inputs.version)被直接嵌入到shell命令中执行。
技术分析
该问题的核心在于GitHub Actions的模板表达式(${{ }})会在shell命令执行前进行展开。这意味着如果能够控制这些输入参数,就可能注入特殊字符或命令,导致非预期的命令执行。
例如在以下代码片段中:
uv run mike deploy ${{ inputs.version }} ${{ inputs.alias }} "${MIKE_OPTIONS[@]}"
三个用户输入参数直接暴露在命令中,存在潜在的安全风险。Zizmor工具正确地识别出了这三个独立的注入点,虽然它们出现在同一代码位置,但实际上是三个不同的安全问题。
修复方案
针对这类模板注入问题,推荐的安全修复方案是通过环境变量中转用户输入:
- 首先将用户输入赋值给环境变量
- 然后在shell命令中引用这些环境变量
修复后的代码示例如下:
- env:
DOCS_PRERELEASE: ${{ inputs.pre_release }}
INPUTS_PUSH: ${{ inputs.push }}
INPUTS_VERSION: ${{ inputs.version }}
INPUTS_ALIAS: ${{ inputs.alias }}
run: |
MIKE_OPTIONS=( "--update-aliases" )
if [ "true" = "${INPUTS_PUSH}" ]; then
MIKE_OPTIONS+=( "--push" )
fi
uv run mike deploy "${INPUTS_VERSION}" "${INPUTS_ALIAS}" "${MIKE_OPTIONS[@]}"
shell: bash
这种修复方式确保了用户输入会先被shell正确处理和转义,然后再作为参数传递给命令,有效防止了命令执行的可能性。
安全工具的价值
Zizmor这类静态分析工具在DevSecOps流程中发挥着重要作用。它能够:
- 自动化识别常见的安全反模式
- 在开发早期阶段发现潜在问题
- 提供具体的修复建议
- 集成到CI/CD流程中实现安全左移
特别是对于复合动作这类相对较新的GitHub Actions特性,专业的安全审计工具能够帮助开发者避免常见的安全陷阱。
总结
模板注入是GitHub Actions工作流中常见的安全风险,特别是在使用复合动作时。通过本案例我们可以看到:
- 用户输入应该通过环境变量中转,而不是直接嵌入命令
- 同一代码位置可能存在多个独立的安全风险
- 静态分析工具能够有效识别这类问题
- 安全修复应该考虑防御性编程原则
开发者在使用GitHub Actions时,应当特别注意用户输入的处理方式,避免直接将模板表达式嵌入到可执行命令中。采用环境变量中转的方式是更安全的做法,能够有效防范命令执行风险。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00