NeuroNER 开源项目使用教程
2024-09-21 11:19:21作者:冯爽妲Honey
1. 项目的目录结构及介绍
NeuroNER 是一个基于神经网络的命名实体识别(NER)的开源项目。项目目录结构如下:
NeuroNER/
│
├── data/ # 存储数据集和预训练模型
├── neuroner/ # 包含NeuroNER的主要代码
│ ├── __init__.py
│ ├── neuromodel.py # 包含NeuroNER模型定义
│ ├── parameters.py # 参数配置文件
│ └── prepare_pretrained_model.py # 预训练模型准备脚本
│
├── requirements.txt # 项目依赖的Python库
├── setup.py # 项目安装脚本
└── README.md # 项目说明文件
data/
:存储项目所需的数据集和预训练模型文件。neuroner/
:包含了项目的主要实现代码。__init__.py
:初始化模块。neuromodel.py
:定义了NeuroNER的模型结构和方法。parameters.py
:定义了项目的参数配置。prepare_pretrained_model.py
:提供了创建和分享预训练模型的脚本。
2. 项目的启动文件介绍
NeuroNER项目的启动主要是通过命令行接口进行的,并没有特定的启动文件。项目的命令行工具提供了一个简单的方式来训练、评估和使用NER模型。以下是一些基础的命令行操作示例:
-
训练模型:
python neuroner/neuromodel.py --train_model=True
-
使用预训练模型进行预测:
python neuroner/neuromodel.py --train_model=False --use_pretrained_model=True
-
获取帮助:
python neuroner/neuromodel.py -h
3. 项目的配置文件介绍
NeuroNER项目的配置主要通过parameters.py
文件进行。该文件定义了一组参数,这些参数可用于配置模型训练、评估和预测过程中的不同方面。
以下是parameters.py
文件中的一些重要配置项:
use_character_lstm
:是否使用字符级LSTM。character_embedding_dimension
:字符嵌入的维度。character_lstm_hidden_state_dimension
:字符LSTM隐藏状态的维度。token_pretrained_embedding_filepath
:预训练的token嵌入文件的路径。token_embedding_dimension
:token嵌入的维度。token_lstm_hidden_state_dimension
:token LSTM隐藏状态的维度。use_crf
:是否使用条件随机场(CRF)。tagging_format
:标注格式,例如bioes
或bio
。tokenizer
:分词器类型。
用户可以通过编辑parameters.py
文件中的这些参数来改变模型的默认行为,以满足特定的需求或优化模型性能。此外,大部分参数也可以通过命令行参数来覆盖。
热门项目推荐
相关项目推荐
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。012hertz
Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。Go01每日精选项目
🔥🔥 每日精选已经升级为:【行业动态】,快去首页看看吧,后续都在【首页 - 行业动态】内更新,多条更新哦~🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029kitex
Go 微服务 RPC 框架,具有高性能、强可扩展的特点。Go00Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie058毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python040PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】。Python00
热门内容推荐
最新内容推荐
项目优选
收起

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
383
36

Python - 100天从新手到大师
Python
611
115

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
58
Ffit-framework
FIT: 企业级AI开发框架,提供多语言函数引擎(FIT)、流式编排引擎(WaterFlow)及Java生态的LangChain替代方案(FEL)。原生/Spring双模运行,支持插件热插拔与智能聚散部署,无缝统一大模型与业务系统。
Java
113
13

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29

a fast,lightweight and joy web framework
Cangjie
11
2

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79

Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。
Go
7
1

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
90
65