WheneverGem 使用指南
1. 安装指南
安装 Whenever Gem 非常简单,可以使用以下任一命令:
$ gem install whenever
或者,如果你在使用 Bundler,可以在你的 Gemfile 中添加以下代码:
gem 'whenever', require: false
然后执行 bundle install 命令。
2. 项目使用说明
使用 Whenever Gem,你需要先在你的项目中初始化一个配置文件。以下是如何创建这个文件的步骤:
$ cd /apps/my-great-project
$ bundle exec wheneverize .
这会在你的项目中的 config 文件夹下创建一个名为 schedule.rb 的文件。
The whenever 命令
whenever 命令会将你的 schedule.rb 文件内容转换为 cron 语法。但它不会读取或写入你的 crontab 文件。
如果你想查看转换后的 cron 语法,可以执行以下命令:
$ cd /apps/my-great-project
$ bundle exec whenever
如果你想将你的任务写入 crontab 文件,可以使用以下命令:
$ whenever --update-crontab
你还可以使用其他选项,例如:
--user app:设置以特定用户身份安装 crontab--load-file config/my_schedule.rb:设置要使用的调度文件--crontab-command 'sudo crontab':覆盖默认的 crontab 命令
注意:如果你不使用 --user 属性运行 whenever --update-crontab,cron 将由当前用户生成。这意味着需要其他用户权限的任务将失败。
你可以使用 crontab -l 命令查看已安装的 cron 任务。
运行 whenever --help 可以获取完整的选项列表,用于选择调度、设置变量等。
3. 项目API使用文档
Whenever Gem 提供了以下几种预定义的作业类型:command、runner 和 rake。你还可以使用 job_type 方法定义自己的作业类型。
例如:
job_type :awesome, '/usr/local/bin/awesome :task :fun_level'
every 2.hours do
awesome "party", fun_level: "extreme"
end
这将每两小时运行 /usr/local/bin/awesome party extreme。
默认的作业类型定义如下:
job_type :command, ":task :output"
job_type :rake, "cd :path && :environment_variable=:environment bundle exec rake :task --silent :output"
job_type :runner, "cd :path && bin/rails runner -e :environment ':task' :output"
job_type :script, "cd :path && :environment_variable=:environment bundle exec script/:task :output"
如果未设置 :path,它将默认为执行 whenever 命令的目录。:environment_variable 默认为 'RAILS_ENV'。:environment 默认为 'production'。:output 会被替换为你的输出重定向设置。
所有作业默认使用 bash -l -c 'command...' 运行。这允许你的 cron 作业加载整个环境,而不是 cron 的有限环境。
你可以通过设置自己的 :job_template 来更改默认设置:
set :job_template, "bash -l -c ':job'"
或者,如果你想取消模板,可以设置为 nil:
set :job_template, nil
4. 项目安装方式
Whenever Gem 的安装方式已在 "安装指南" 部分说明,以下是简要步骤:
- 使用
gem install whenever命令安装 Gem。 - 在项目中运行
bundle exec wheneverize .初始化schedule.rb。 - 运行
bundle exec whenever查看cron语法。 - 运行
whenever --update-crontab将任务写入 crontab。
确保在执行 whenever --update-crontab 时根据需要设置用户权限。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00