Falco规则中如何提取全部可用字段到输出字段
2025-05-28 16:02:36作者:尤辰城Agatha
在安全监控领域,Falco作为一款开源的云原生运行时安全工具,其规则引擎能够检测系统调用和内核事件。然而,在实际使用过程中,用户经常需要获取事件的全部可用字段以支持安全分析,而默认情况下Falco仅输出规则中明确指定的字段。
问题背景
传统Falco规则配置中,output_fields仅包含规则output部分显式定义的字段。当安全团队需要将告警发送至SIEM等分析平台时,这种限制会导致分析所需的关键字段缺失,迫使管理员必须在每条规则中枚举所有可能需要的字段,这既繁琐又容易遗漏。
解决方案演进
Falco社区在0.39.0版本中引入了append_output功能,完美解决了这一痛点。该功能允许用户在规则中追加额外的输出字段,而无需修改原有的输出格式。
实现方式
append_output提供了灵活的字段选择机制:
- 精确字段选择:可以指定具体的字段名称,如
proc.name、evt.type等 - 通配符匹配:支持使用
*通配符,例如proc.*可匹配所有进程相关字段 - 全字段捕获:使用
*可捕获事件的所有可用字段
实际应用示例
以下是一个使用append_output的完整规则示例:
- rule: Comprehensive_Process_Execution
desc: 记录详细的进程执行信息
condition: evt.type = execve
output: 检测到可疑进程执行 (进程=%proc.name 用户=%user.name)
append_output: true
append_fields:
- proc.*
- evt.*
- user.uid
priority: WARNING
此配置不仅保留了原有的简洁输出信息,还会在输出中包含所有进程相关字段、事件相关字段以及用户UID等详细信息。
技术优势
- 后向兼容:不影响现有规则的输出格式
- 灵活性:可根据分析需求精确控制附加字段
- 性能优化:避免在主要输出中包含不必要的信息
- 维护简便:字段管理集中化,减少规则修改频率
最佳实践建议
- 在SIEM集成场景下,建议使用
append_output捕获完整事件上下文 - 对于高频事件,应谨慎选择附加字段以避免性能影响
- 可通过字段通配符简化规则维护
- 定期审查附加字段列表,确保其与当前分析需求匹配
这一功能的引入显著提升了Falco在复杂安全分析场景下的实用性,使安全团队能够在不增加规则维护负担的情况下,获取更丰富的事件上下文信息。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
267
2.54 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
Ascend Extension for PyTorch
Python
98
126
暂无简介
Dart
556
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
54
11
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
604
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1