DrissionPage 项目中查找不存在元素时的性能优化
2025-05-24 17:56:43作者:昌雅子Ethen
问题现象分析
在使用 DrissionPage 进行网页自动化测试时,发现一个性能问题:当查找页面中存在的元素时,速度很快(不到1秒);但当查找不存在的元素时,每次查找需要等待约10秒钟。这种延迟在自动化测试场景中会显著降低执行效率。
问题原因
经过分析,这个问题主要源于 DrissionPage 的默认工作模式。DrissionPage 支持两种工作模式:
- d 模式:直接控制浏览器,通过 CDP 协议与浏览器交互
- s 模式:使用 requests 获取网页源码,再用 lxml 解析
在 d 模式下,当查找不存在的元素时,DrissionPage 会等待较长时间以确保元素确实不存在,而不是因为页面尚未加载完成。这种保守策略虽然提高了可靠性,但牺牲了性能。
解决方案
方案一:切换到 s 模式
对于不需要与页面交互的简单元素查找任务,可以切换到 s 模式:
from DrissionPage import SessionPage
page = SessionPage()
page.get(url)
elements = page.eles(selector)
s 模式的优点:
- 解析速度快
- 资源消耗低
- 适合简单的数据抓取场景
但需要注意:
- 无法执行 JavaScript
- 不能处理动态加载的内容
- 某些情况下可能遇到解析错误(如文档为空)
方案二:调整超时参数
在 d 模式下,可以通过设置 timeout 参数来优化查找不存在元素时的等待时间:
# 设置超时为2秒
found_elements = page.eles(selector, timeout=2)
方案三:混合使用两种模式
对于复杂场景,可以结合使用两种模式:
- 先用 s 模式快速检查元素是否存在
- 如果需要交互,再切换到 d 模式
from DrissionPage import SessionPage, ChromiumPage
# 先用s模式快速检查
s_page = SessionPage()
s_page.get(url)
if s_page.ele('#some-element', timeout=1):
# 如果需要交互,切换到d模式
d_page = ChromiumPage()
d_page.get(url)
# 执行交互操作
最佳实践建议
-
根据任务性质选择合适的模式:
- 纯数据抓取 → s 模式
- 需要交互 → d 模式
-
在 d 模式中合理设置超时时间,平衡可靠性和性能
-
对于已知不存在的元素查找,可以封装工具函数:
def quick_check_element(page, selector):
return page.eles(selector, timeout=1) if page.mode == 'd' else page.eles(selector)
- 监控和记录元素查找耗时,持续优化超时参数
通过以上方法,可以显著提升 DrissionPage 在自动化测试和数据抓取任务中的执行效率,特别是在需要频繁检查元素是否存在的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92