DrissionPage 项目中查找不存在元素时的性能优化
2025-05-24 18:23:15作者:昌雅子Ethen
问题现象分析
在使用 DrissionPage 进行网页自动化测试时,发现一个性能问题:当查找页面中存在的元素时,速度很快(不到1秒);但当查找不存在的元素时,每次查找需要等待约10秒钟。这种延迟在自动化测试场景中会显著降低执行效率。
问题原因
经过分析,这个问题主要源于 DrissionPage 的默认工作模式。DrissionPage 支持两种工作模式:
- d 模式:直接控制浏览器,通过 CDP 协议与浏览器交互
- s 模式:使用 requests 获取网页源码,再用 lxml 解析
在 d 模式下,当查找不存在的元素时,DrissionPage 会等待较长时间以确保元素确实不存在,而不是因为页面尚未加载完成。这种保守策略虽然提高了可靠性,但牺牲了性能。
解决方案
方案一:切换到 s 模式
对于不需要与页面交互的简单元素查找任务,可以切换到 s 模式:
from DrissionPage import SessionPage
page = SessionPage()
page.get(url)
elements = page.eles(selector)
s 模式的优点:
- 解析速度快
- 资源消耗低
- 适合简单的数据抓取场景
但需要注意:
- 无法执行 JavaScript
- 不能处理动态加载的内容
- 某些情况下可能遇到解析错误(如文档为空)
方案二:调整超时参数
在 d 模式下,可以通过设置 timeout 参数来优化查找不存在元素时的等待时间:
# 设置超时为2秒
found_elements = page.eles(selector, timeout=2)
方案三:混合使用两种模式
对于复杂场景,可以结合使用两种模式:
- 先用 s 模式快速检查元素是否存在
- 如果需要交互,再切换到 d 模式
from DrissionPage import SessionPage, ChromiumPage
# 先用s模式快速检查
s_page = SessionPage()
s_page.get(url)
if s_page.ele('#some-element', timeout=1):
# 如果需要交互,切换到d模式
d_page = ChromiumPage()
d_page.get(url)
# 执行交互操作
最佳实践建议
-
根据任务性质选择合适的模式:
- 纯数据抓取 → s 模式
- 需要交互 → d 模式
-
在 d 模式中合理设置超时时间,平衡可靠性和性能
-
对于已知不存在的元素查找,可以封装工具函数:
def quick_check_element(page, selector):
return page.eles(selector, timeout=1) if page.mode == 'd' else page.eles(selector)
- 监控和记录元素查找耗时,持续优化超时参数
通过以上方法,可以显著提升 DrissionPage 在自动化测试和数据抓取任务中的执行效率,特别是在需要频繁检查元素是否存在的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C071
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
460
3.43 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
267
304
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
186
71
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
842
417
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
446
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119