Drizzle ORM 中解决 JSON 聚合查询的类型推断问题
在使用 Drizzle ORM 进行 PostgreSQL 数据库操作时,开发人员经常会遇到需要将关联表数据聚合为 JSON 数组的需求。本文深入探讨了一个典型场景下的解决方案,帮助开发者理解如何正确处理这类查询。
问题背景
在关系型数据库中,我们经常需要处理一对多的关系。例如,一个学科(Subject)可以包含多个主题(Topic)。传统 SQL 查询会返回扁平化的结果,而现代应用往往更期望嵌套的 JSON 结构。
Drizzle ORM 提供了强大的查询构建能力,但在使用 jsonb_agg 函数聚合关联表数据时,开发者可能会遇到类型推断错误:"could not determine polymorphic type because input has type unknown"。
错误分析
原始查询尝试使用 getTableName 函数获取表名作为聚合参数:
sql`jsonb_agg(${getTableName(topics)})`
这种方法会导致类型系统无法正确推断返回值的类型结构,因为 getTableName 仅返回字符串形式的表名,丢失了表结构的类型信息。
正确解决方案
Drizzle ORM 的设计哲学是充分利用 TypeScript 的类型系统。正确的做法是直接传递表对象本身,而不是表名:
sql`jsonb_agg(${topics})`
这种方式保留了完整的类型信息,使得 Drizzle ORM 能够:
- 正确推断返回的 JSON 结构
- 提供完善的类型提示
- 确保运行时查询的正确性
深入理解
PostgreSQL 的 jsonb_agg 函数需要一个表达式作为输入。当直接传递表对象时,Drizzle ORM 会在底层将其转换为正确的 SQL 表达式,同时保持类型安全。
这种设计模式体现了 Drizzle ORM 的几个核心优势:
- 类型安全:从数据库查询到应用代码全程类型检查
- 开发体验:智能提示和自动补全
- 可维护性:清晰的代码表达意图
最佳实践
对于类似的关联查询场景,建议采用以下模式:
const result = await db
.select({
...getTableColumns(subjects),
topics: sql`jsonb_agg(${topics})`.as("topics"),
})
.from(subjects)
.leftJoin(topics, eq(topics.subjectId, subjects.id))
.groupBy(subjects.id);
这种方式既保持了代码的简洁性,又确保了类型安全,是 Drizzle ORM 推荐的查询构建方式。
总结
Drizzle ORM 通过巧妙的类型系统设计,使得开发者能够以类型安全的方式构建复杂的 SQL 查询。理解 ORM 的类型推断机制,并正确使用其 API,可以显著提高开发效率和代码质量。在处理 JSON 聚合等高级查询时,直接传递表对象而非表名,是确保类型安全的关键所在。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00