Drizzle ORM 中解决 JSON 聚合查询的类型推断问题
在使用 Drizzle ORM 进行 PostgreSQL 数据库操作时,开发人员经常会遇到需要将关联表数据聚合为 JSON 数组的需求。本文深入探讨了一个典型场景下的解决方案,帮助开发者理解如何正确处理这类查询。
问题背景
在关系型数据库中,我们经常需要处理一对多的关系。例如,一个学科(Subject)可以包含多个主题(Topic)。传统 SQL 查询会返回扁平化的结果,而现代应用往往更期望嵌套的 JSON 结构。
Drizzle ORM 提供了强大的查询构建能力,但在使用 jsonb_agg 函数聚合关联表数据时,开发者可能会遇到类型推断错误:"could not determine polymorphic type because input has type unknown"。
错误分析
原始查询尝试使用 getTableName 函数获取表名作为聚合参数:
sql`jsonb_agg(${getTableName(topics)})`
这种方法会导致类型系统无法正确推断返回值的类型结构,因为 getTableName 仅返回字符串形式的表名,丢失了表结构的类型信息。
正确解决方案
Drizzle ORM 的设计哲学是充分利用 TypeScript 的类型系统。正确的做法是直接传递表对象本身,而不是表名:
sql`jsonb_agg(${topics})`
这种方式保留了完整的类型信息,使得 Drizzle ORM 能够:
- 正确推断返回的 JSON 结构
- 提供完善的类型提示
- 确保运行时查询的正确性
深入理解
PostgreSQL 的 jsonb_agg 函数需要一个表达式作为输入。当直接传递表对象时,Drizzle ORM 会在底层将其转换为正确的 SQL 表达式,同时保持类型安全。
这种设计模式体现了 Drizzle ORM 的几个核心优势:
- 类型安全:从数据库查询到应用代码全程类型检查
- 开发体验:智能提示和自动补全
- 可维护性:清晰的代码表达意图
最佳实践
对于类似的关联查询场景,建议采用以下模式:
const result = await db
.select({
...getTableColumns(subjects),
topics: sql`jsonb_agg(${topics})`.as("topics"),
})
.from(subjects)
.leftJoin(topics, eq(topics.subjectId, subjects.id))
.groupBy(subjects.id);
这种方式既保持了代码的简洁性,又确保了类型安全,是 Drizzle ORM 推荐的查询构建方式。
总结
Drizzle ORM 通过巧妙的类型系统设计,使得开发者能够以类型安全的方式构建复杂的 SQL 查询。理解 ORM 的类型推断机制,并正确使用其 API,可以显著提高开发效率和代码质量。在处理 JSON 聚合等高级查询时,直接传递表对象而非表名,是确保类型安全的关键所在。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00