在pykan项目中训练自定义回归数据集的注意事项
2025-05-14 10:03:50作者:温玫谨Lighthearted
在使用pykan项目进行回归任务训练时,正确准备和加载数据集是至关重要的第一步。本文将从技术角度详细分析如何为pykan模型准备回归数据集,并避免常见的错误。
数据集结构要求
pykan模型对输入数据集有明确的结构要求。回归任务的数据集应该是一个字典,包含四个关键元素:
train_input: 训练集输入特征train_label: 训练集目标值test_input: 测试集输入特征test_label: 测试集目标值
每个元素都应该是PyTorch张量(torch.Tensor)格式。在创建数据集时,最常见的错误是训练集和测试集的维度不匹配或数据切片错误。
数据准备的正确方法
正确的数据集准备流程应该遵循以下步骤:
- 数据分割:首先将原始数据分割为训练集和测试集
- 转换为张量:然后将NumPy数组转换为PyTorch张量
- 构建字典:最后按照要求的结构构建数据集字典
# 正确的数据集准备示例
import torch
import numpy as np
from sklearn.model_selection import train_test_split
# 假设X是特征,y是目标值
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
dataset = {
'train_input': torch.from_numpy(X_train),
'test_input': torch.from_numpy(X_test),
'train_label': torch.from_numpy(y_train),
'test_label': torch.from_numpy(y_test),
}
常见错误分析
在准备数据集时,开发者常犯的错误包括:
- 维度不匹配:训练输入和标签的样本数量不一致
- 切片错误:错误地使用了相同的索引范围切片训练和测试数据
- 形状问题:目标值没有正确的形状(如缺少必要的维度)
例如,以下代码会导致错误:
# 错误示例 - 训练和测试集使用了相同的索引范围
dataset = {
'train_input': torch.from_numpy(X[:3000]), # 前3000个样本
'test_input': torch.from_numpy(X[:2000]), # 前2000个样本
'train_label': torch.from_numpy(y[:3000]),
'test_label': torch.from_numpy(y[:2000]),
}
这种切片方式会导致训练和测试集有大量重叠数据,且当模型尝试访问索引2941时,由于测试集只有2000个样本,会抛出"IndexError"。
最佳实践建议
- 使用标准分割方法:推荐使用sklearn的train_test_split函数,它可以确保数据随机分割且无重叠
- 检查数据形状:在创建数据集后,应该打印并检查各部分的形状
- 目标值形状:确保回归目标值的形状是(n_samples, 1)而不是(n_samples,)
- 数据类型转换:必要时将数据转换为float32类型,避免类型不匹配
# 完整的最佳实践示例
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 确保目标值是二维的
if len(y_train.shape) == 1:
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
dataset = {
'train_input': torch.from_numpy(X_train.astype(np.float32)),
'test_input': torch.from_numpy(X_test.astype(np.float32)),
'train_label': torch.from_numpy(y_train.astype(np.float32)),
'test_label': torch.from_numpy(y_test.astype(np.float32)),
}
# 验证形状
print(f"训练输入形状: {dataset['train_input'].shape}")
print(f"训练标签形状: {dataset['train_label'].shape}")
print(f"测试输入形状: {dataset['test_input'].shape}")
print(f"测试标签形状: {dataset['test_label'].shape}")
通过遵循这些指导原则,开发者可以避免常见的陷阱,确保pykan模型能够正确加载和训练自定义的回归数据集。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134