在pykan项目中训练自定义回归数据集的注意事项
2025-05-14 02:22:05作者:温玫谨Lighthearted
在使用pykan项目进行回归任务训练时,正确准备和加载数据集是至关重要的第一步。本文将从技术角度详细分析如何为pykan模型准备回归数据集,并避免常见的错误。
数据集结构要求
pykan模型对输入数据集有明确的结构要求。回归任务的数据集应该是一个字典,包含四个关键元素:
train_input: 训练集输入特征train_label: 训练集目标值test_input: 测试集输入特征test_label: 测试集目标值
每个元素都应该是PyTorch张量(torch.Tensor)格式。在创建数据集时,最常见的错误是训练集和测试集的维度不匹配或数据切片错误。
数据准备的正确方法
正确的数据集准备流程应该遵循以下步骤:
- 数据分割:首先将原始数据分割为训练集和测试集
- 转换为张量:然后将NumPy数组转换为PyTorch张量
- 构建字典:最后按照要求的结构构建数据集字典
# 正确的数据集准备示例
import torch
import numpy as np
from sklearn.model_selection import train_test_split
# 假设X是特征,y是目标值
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
dataset = {
'train_input': torch.from_numpy(X_train),
'test_input': torch.from_numpy(X_test),
'train_label': torch.from_numpy(y_train),
'test_label': torch.from_numpy(y_test),
}
常见错误分析
在准备数据集时,开发者常犯的错误包括:
- 维度不匹配:训练输入和标签的样本数量不一致
- 切片错误:错误地使用了相同的索引范围切片训练和测试数据
- 形状问题:目标值没有正确的形状(如缺少必要的维度)
例如,以下代码会导致错误:
# 错误示例 - 训练和测试集使用了相同的索引范围
dataset = {
'train_input': torch.from_numpy(X[:3000]), # 前3000个样本
'test_input': torch.from_numpy(X[:2000]), # 前2000个样本
'train_label': torch.from_numpy(y[:3000]),
'test_label': torch.from_numpy(y[:2000]),
}
这种切片方式会导致训练和测试集有大量重叠数据,且当模型尝试访问索引2941时,由于测试集只有2000个样本,会抛出"IndexError"。
最佳实践建议
- 使用标准分割方法:推荐使用sklearn的train_test_split函数,它可以确保数据随机分割且无重叠
- 检查数据形状:在创建数据集后,应该打印并检查各部分的形状
- 目标值形状:确保回归目标值的形状是(n_samples, 1)而不是(n_samples,)
- 数据类型转换:必要时将数据转换为float32类型,避免类型不匹配
# 完整的最佳实践示例
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 确保目标值是二维的
if len(y_train.shape) == 1:
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
dataset = {
'train_input': torch.from_numpy(X_train.astype(np.float32)),
'test_input': torch.from_numpy(X_test.astype(np.float32)),
'train_label': torch.from_numpy(y_train.astype(np.float32)),
'test_label': torch.from_numpy(y_test.astype(np.float32)),
}
# 验证形状
print(f"训练输入形状: {dataset['train_input'].shape}")
print(f"训练标签形状: {dataset['train_label'].shape}")
print(f"测试输入形状: {dataset['test_input'].shape}")
print(f"测试标签形状: {dataset['test_label'].shape}")
通过遵循这些指导原则,开发者可以避免常见的陷阱,确保pykan模型能够正确加载和训练自定义的回归数据集。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1