使用AsyncSSH实现多级SSH端口转发与智能卡认证
在分布式系统开发中,经常需要通过中间服务器访问后端服务,同时需要确保传输安全。本文将介绍如何利用Python的AsyncSSH库实现多级SSH跳转和端口转发,并探讨智能卡认证的最佳实践。
多级SSH端口转发场景
典型场景中,开发者需要从本地机器通过中间服务器(172.16.16.158)访问目标服务器(172.16.16.160)上的服务。传统SSH客户端可以通过命令实现这种转发:
ssh -J 172.16.16.158 172.16.16.160 -L 4444:localhost:4444
但在自动化脚本中,我们需要更灵活的编程式控制。AsyncSSH提供了强大的API来实现这一需求。
AsyncSSH实现方案
初始尝试方案
开发者最初尝试使用AsyncSSH的双重连接方式:
async with asyncssh.connect("172.16.16.158") as build_conn:
async with build_conn.connect_ssh("172.16.16.160") as sign_conn:
sign_listener = await sign_conn.forward_local_port(
"localhost", 4444, "localhost", 4444
)
这种方法的问题在于它会在本地机器(而非中间服务器)上建立端口转发,不符合需求。
有效解决方案
正确的实现方式是在中间服务器上执行SSH转发命令:
async with asyncssh.connect("172.16.16.158") as build_conn:
proc = await build_conn.create_process(
"ssh -N -L 4444:localhost:4444 172.16.16.160"
)
# 保持连接
await asyncio.sleep(10)
proc.send_signal("INT")
await proc.wait_closed()
这种方法确实实现了需求,但存在需要多次认证的问题。
智能卡认证优化
当使用智能卡进行认证时,系统会多次提示输入PIN码,影响用户体验。AsyncSSH提供了PKCS#11支持,可以优化这一流程:
options = SSHClientConnectionOptions(
pkcs11_provider='/usr/lib/opensc-pkcs11.so',
pkcs11_pin='123456' # 从用户输入获取
)
async with asyncssh.connect("172.16.16.158", options=options) as conn:
# 连接逻辑
通过集中管理认证信息,可以避免多次输入PIN码的问题。
技术要点总结
-
端口转发层级:AsyncSSH的
forward_local_port始终从发起连接的客户端开始转发,无法直接在中间服务器上建立转发。 -
认证流程:多级SSH跳转必然需要多次认证,但可以通过PKCS#11等机制减少用户交互。
-
进程管理:在远程服务器上执行SSH命令时,需要妥善管理进程生命周期,避免资源泄漏。
-
安全考虑:端口转发增加了系统暴露面,应确保仅开放必要的端口,并在使用后及时关闭。
最佳实践建议
-
对于复杂的多级转发场景,考虑在中间服务器上部署专用的转发服务。
-
使用AsyncSSH的PKCS#11支持可以简化智能卡认证流程。
-
在生产环境中,应该实现完善的错误处理和连接状态监控。
-
考虑使用SSH配置文件(~/.ssh/config)预先定义跳转关系,简化连接逻辑。
通过合理运用AsyncSSH的高级特性,开发者可以构建既安全又高效的分布式系统连接方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00