FiftyOne 核心库中混淆矩阵功能的增强:支持包含缺失标签
在机器学习模型的评估过程中,混淆矩阵是最常用的工具之一,它能直观地展示模型预测结果与真实标签之间的对应关系。FiftyOne 作为一款强大的计算机视觉数据集分析和模型评估工具,其核心库提供了混淆矩阵的计算和可视化功能。本文将详细介绍 FiftyOne 最新版本中对混淆矩阵功能的增强——新增了 include_missing 参数,使开发者能够更灵活地控制是否在混淆矩阵中包含缺失标签。
背景与需求
在传统的混淆矩阵实现中,通常只考虑模型预测结果与真实标签完全匹配的情况。然而在实际应用中,模型可能会产生一些无法匹配到任何真实标签的预测(未匹配阳性),或者某些真实标签可能没有被任何预测匹配到(未匹配阴性)。这些情况统称为"缺失"或"未匹配"的情况。
FiftyOne 原有的 confusion_matrix 方法虽然能够计算基本的混淆矩阵,但在处理缺失标签方面存在局限性。具体来说,该方法内部调用 _confusion_matrix 时硬编码了 include_missing=False,导致开发者无法通过参数控制是否包含缺失标签。
功能实现细节
最新版本的 FiftyOne 在 confusion_matrix 方法中新增了 include_missing 参数,其默认值为 False 以保持向后兼容性。开发者现在可以通过设置 include_missing=True 来显式要求在混淆矩阵中包含缺失标签。
def confusion_matrix(self, classes=None, include_other=False, include_missing=False):
...
confusion_matrix, _, _ = self._confusion_matrix(
classes=classes,
include_other=include_other,
include_missing=include_missing
)
return confusion_matrix
这一改进使得混淆矩阵的计算更加灵活,能够适应不同场景下的评估需求。
使用场景与最佳实践
-
目标检测评估:在目标检测任务中,
results.missing永远不会出现在results.classes中,因此明确指定include_missing=True可以确保为缺失情况添加单独的行/列。 -
二分类问题:在二分类场景中,"缺失"可能等同于"负类"。此时开发者需要注意
results.missing可能已经包含在results.classes中,避免重复计算。 -
可视化分析:当使用
plot_confusion_matrix进行可视化时,FiftyOne 会自动为"缺失"和"其他"情况添加行/列(如果存在相关示例)。这种智能行为专为可视化设计,不同于程序化使用的confusion_matrix方法。
技术考量
实现这一功能时,开发团队考虑了以下技术细节:
-
矩阵形状确定性:为了保证程序化使用时混淆矩阵形状的可预测性,需要明确处理当
include_missing和include_other同时为True时,新增行/列的添加顺序。 -
向后兼容性:默认保持
include_missing=False确保现有代码不会受到影响。 -
文档完善:明确说明开发者可以通过在
classes列表中添加results.missing来包含缺失标签,这为不升级到新版本的开发者提供了替代方案。
总结
FiftyOne 对混淆矩阵功能的这一增强,使得开发者能够更全面地评估模型性能,特别是在处理未匹配预测或真实标签的场景下。这一改进体现了 FiftyOne 团队对开发者需求的积极响应,也展示了该工具在模型评估领域的持续创新。对于需要进行精细模型分析的计算机视觉开发者来说,这一功能将大大提升工作效率和评估的准确性。
建议开发者升级到最新版本的 FiftyOne 以利用这一改进功能,同时也需要注意不同评估场景下参数设置的差异,以获得最准确的评估结果。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00