FiftyOne 核心库中混淆矩阵功能的增强:支持包含缺失标签
在机器学习模型的评估过程中,混淆矩阵是最常用的工具之一,它能直观地展示模型预测结果与真实标签之间的对应关系。FiftyOne 作为一款强大的计算机视觉数据集分析和模型评估工具,其核心库提供了混淆矩阵的计算和可视化功能。本文将详细介绍 FiftyOne 最新版本中对混淆矩阵功能的增强——新增了 include_missing 参数,使开发者能够更灵活地控制是否在混淆矩阵中包含缺失标签。
背景与需求
在传统的混淆矩阵实现中,通常只考虑模型预测结果与真实标签完全匹配的情况。然而在实际应用中,模型可能会产生一些无法匹配到任何真实标签的预测(未匹配阳性),或者某些真实标签可能没有被任何预测匹配到(未匹配阴性)。这些情况统称为"缺失"或"未匹配"的情况。
FiftyOne 原有的 confusion_matrix 方法虽然能够计算基本的混淆矩阵,但在处理缺失标签方面存在局限性。具体来说,该方法内部调用 _confusion_matrix 时硬编码了 include_missing=False,导致开发者无法通过参数控制是否包含缺失标签。
功能实现细节
最新版本的 FiftyOne 在 confusion_matrix 方法中新增了 include_missing 参数,其默认值为 False 以保持向后兼容性。开发者现在可以通过设置 include_missing=True 来显式要求在混淆矩阵中包含缺失标签。
def confusion_matrix(self, classes=None, include_other=False, include_missing=False):
    ...
    confusion_matrix, _, _ = self._confusion_matrix(
        classes=classes, 
        include_other=include_other, 
        include_missing=include_missing
    )
    return confusion_matrix
这一改进使得混淆矩阵的计算更加灵活,能够适应不同场景下的评估需求。
使用场景与最佳实践
- 
目标检测评估:在目标检测任务中,
results.missing永远不会出现在results.classes中,因此明确指定include_missing=True可以确保为缺失情况添加单独的行/列。 - 
二分类问题:在二分类场景中,"缺失"可能等同于"负类"。此时开发者需要注意
results.missing可能已经包含在results.classes中,避免重复计算。 - 
可视化分析:当使用
plot_confusion_matrix进行可视化时,FiftyOne 会自动为"缺失"和"其他"情况添加行/列(如果存在相关示例)。这种智能行为专为可视化设计,不同于程序化使用的confusion_matrix方法。 
技术考量
实现这一功能时,开发团队考虑了以下技术细节:
- 
矩阵形状确定性:为了保证程序化使用时混淆矩阵形状的可预测性,需要明确处理当
include_missing和include_other同时为True时,新增行/列的添加顺序。 - 
向后兼容性:默认保持
include_missing=False确保现有代码不会受到影响。 - 
文档完善:明确说明开发者可以通过在
classes列表中添加results.missing来包含缺失标签,这为不升级到新版本的开发者提供了替代方案。 
总结
FiftyOne 对混淆矩阵功能的这一增强,使得开发者能够更全面地评估模型性能,特别是在处理未匹配预测或真实标签的场景下。这一改进体现了 FiftyOne 团队对开发者需求的积极响应,也展示了该工具在模型评估领域的持续创新。对于需要进行精细模型分析的计算机视觉开发者来说,这一功能将大大提升工作效率和评估的准确性。
建议开发者升级到最新版本的 FiftyOne 以利用这一改进功能,同时也需要注意不同评估场景下参数设置的差异,以获得最准确的评估结果。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00