dm_pix 项目教程
2024-09-24 01:57:42作者:房伟宁
1. 项目的目录结构及介绍
dm_pix 项目的目录结构如下:
dm_pix/
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── pyproject.toml
├── readthedocs.yml
├── test.sh
├── github/
│ └── workflows/
├── dm_pix/
│ ├── __init__.py
│ └── ...
├── docs/
│ └── ...
├── examples/
│ └── ...
└── tests/
└── ...
目录结构介绍
- CONTRIBUTING.md: 贡献指南文件,包含如何为项目贡献代码的说明。
- LICENSE: 项目的开源许可证文件,dm_pix 使用 Apache-2.0 许可证。
- README.md: 项目的主文档文件,包含项目的概述、安装指南、使用示例等。
- pyproject.toml: Python 项目的配置文件,定义了项目的依赖和构建工具。
- readthedocs.yml: 用于配置 readthedocs 文档服务的文件。
- test.sh: 测试脚本,用于运行项目的测试套件。
- github/workflows/: 包含 GitHub Actions 的工作流配置文件,用于持续集成和部署。
- dm_pix/: 项目的主要代码目录,包含所有的 Python 源代码文件。
- docs/: 项目的文档目录,包含项目的详细文档和使用说明。
- examples/: 包含项目的示例代码,展示了如何使用 dm_pix 进行图像处理。
- tests/: 包含项目的测试代码,用于验证代码的正确性和稳定性。
2. 项目的启动文件介绍
dm_pix 项目没有明确的“启动文件”,因为它是一个库项目,而不是一个应用程序。用户可以通过导入 dm_pix 模块来使用其中的功能。例如:
import dm_pix as pix
# 使用 dm_pix 进行图像处理
image = load_image()
flip_left_right_image = pix.flip_left_right(image)
3. 项目的配置文件介绍
pyproject.toml
pyproject.toml 是 Python 项目的配置文件,定义了项目的依赖和构建工具。以下是 dm_pix 项目中 pyproject.toml 的部分内容:
[build-system]
requires = ["setuptools>=42", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "dm-pix"
version = "0.4.3"
description = "PIX is an image processing library in JAX for JAX"
authors = [
{ name="DeepMind", email="no-reply@deepmind.com" }
]
license = { file="LICENSE" }
readme = "README.md"
requires-python = ">=3.7"
dependencies = [
# JAX is not listed as a dependency here, but it is required for dm_pix to work.
]
配置文件介绍
- build-system: 定义了构建系统的要求和后端。
- project: 定义了项目的基本信息,如名称、版本、描述、作者、许可证等。
- dependencies: 定义了项目的依赖项。注意,JAX 虽然不是直接列出的依赖项,但它是 dm_pix 正常工作的必要条件。
通过这些配置文件,用户可以了解项目的依赖关系、构建方式以及如何正确地安装和使用 dm_pix。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C097
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
232
97
暂无简介
Dart
728
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
287
320
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
445
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19