Ultimate Vocal Remover GUI项目在Linux系统下的适配方案
2025-05-10 14:10:56作者:俞予舒Fleming
项目背景
Ultimate Vocal Remover GUI(简称UVR)是一款开源的音频处理工具,主要用于从音乐中分离人声和伴奏。该项目最新版本5.6.1 Beta在Windows平台上表现优异,但官方尚未提供对Linux平台的完整支持。本文将详细介绍如何在Linux系统(特别是Ubuntu 24.04.2)上成功运行UVR 5.6.0版本,并利用AMD ROCm技术实现GPU加速。
环境准备
系统要求
- 操作系统:Ubuntu 24.04.2 LTS
- GPU驱动:ROCm 6.4
- Python版本:3.10
基础软件安装
首先需要安装一些基础依赖包:
sudo apt-get install -y python3-pip python3-tk ffmpeg
项目配置步骤
1. 创建Python虚拟环境
使用Anaconda创建隔离的Python环境:
conda create -n uvr python=3.10
conda activate uvr
2. 获取项目代码
克隆特定分支的代码:
git clone -b v5.6.0_roformer_add+directml --single-branch 项目仓库地址
cd ultimatevocalremovergui/
3. PyTorch安装配置
根据ROCm版本安装对应的PyTorch:
pip3 install --pre torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0
4. 解决PyTorch 2.6.0兼容性问题
由于项目最初是为较低版本的PyTorch设计的,需要进行以下修改:
grep -r "torch.load"
在所有找到的文件中添加weights_only=False参数,修改格式为:
torch.load(XXXXX, weights_only=False)
5. ONNX Runtime配置
安装ROCm版本的ONNX Runtime:
pip3 install onnxruntime-rocm
然后将所有CUDAExecutionProvider替换为ROCMExecutionProvider,主要在separate.py文件中。
依赖项调整
修改requirements.txt文件,移除已单独安装的包并更新部分依赖版本。以下是调整后的关键依赖项:
altgraph==0.17.3
audioread==3.0.0
einops==0.6.0
librosa==0.9.2
numpy==1.23.5
onnx
onnxruntime-rocm
pytorch_lightning==2.0.0
scipy==1.10.1
soundfile==0.11.0
安装调整后的依赖:
pip install -r requirements.txt
移除DirectML支持
由于DirectML是微软的深度学习库,在Linux环境下不需要,需要进行以下修改:
- 查找并删除所有包含
import torch_directml的代码 - 修改separate.py中的
get_gpu_info()函数,移除DirectML相关逻辑
修改后的函数如下:
def get_gpu_info():
directml_device, directml_available = None, False
return directml_device, directml_available
模型性能
经过上述配置后,项目可以在Linux系统上正常运行。测试结果显示:
- 使用的模型:melband_roformer_instvox_duality_v2
- GPU内存占用:约5.6GB
- 处理速度:与Windows平台相当
注意事项
- 目前PyTorch ROCm仅支持Linux和Windows WSL环境
- AMD官方尚未提供Windows原生支持,预计将在未来版本中实现
- 不同ROCm版本可能需要调整对应的PyTorch和ONNX Runtime版本
总结
通过本文介绍的配置方法,用户可以在Linux系统上成功运行Ultimate Vocal Remover GUI项目,并利用AMD GPU进行加速处理。这种方法不仅适用于UVR项目,也为其他需要在Linux环境下使用ROCm进行深度学习应用开发提供了参考方案。随着ROCm生态的不断完善,未来在Linux平台上的深度学习应用部署将会更加便捷。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
278
暂无简介
Dart
639
145
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100