Ultimate Vocal Remover GUI项目在Linux系统下的适配方案
2025-05-10 10:34:03作者:俞予舒Fleming
项目背景
Ultimate Vocal Remover GUI(简称UVR)是一款开源的音频处理工具,主要用于从音乐中分离人声和伴奏。该项目最新版本5.6.1 Beta在Windows平台上表现优异,但官方尚未提供对Linux平台的完整支持。本文将详细介绍如何在Linux系统(特别是Ubuntu 24.04.2)上成功运行UVR 5.6.0版本,并利用AMD ROCm技术实现GPU加速。
环境准备
系统要求
- 操作系统:Ubuntu 24.04.2 LTS
- GPU驱动:ROCm 6.4
- Python版本:3.10
基础软件安装
首先需要安装一些基础依赖包:
sudo apt-get install -y python3-pip python3-tk ffmpeg
项目配置步骤
1. 创建Python虚拟环境
使用Anaconda创建隔离的Python环境:
conda create -n uvr python=3.10
conda activate uvr
2. 获取项目代码
克隆特定分支的代码:
git clone -b v5.6.0_roformer_add+directml --single-branch 项目仓库地址
cd ultimatevocalremovergui/
3. PyTorch安装配置
根据ROCm版本安装对应的PyTorch:
pip3 install --pre torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0
4. 解决PyTorch 2.6.0兼容性问题
由于项目最初是为较低版本的PyTorch设计的,需要进行以下修改:
grep -r "torch.load"
在所有找到的文件中添加weights_only=False参数,修改格式为:
torch.load(XXXXX, weights_only=False)
5. ONNX Runtime配置
安装ROCm版本的ONNX Runtime:
pip3 install onnxruntime-rocm
然后将所有CUDAExecutionProvider替换为ROCMExecutionProvider,主要在separate.py文件中。
依赖项调整
修改requirements.txt文件,移除已单独安装的包并更新部分依赖版本。以下是调整后的关键依赖项:
altgraph==0.17.3
audioread==3.0.0
einops==0.6.0
librosa==0.9.2
numpy==1.23.5
onnx
onnxruntime-rocm
pytorch_lightning==2.0.0
scipy==1.10.1
soundfile==0.11.0
安装调整后的依赖:
pip install -r requirements.txt
移除DirectML支持
由于DirectML是微软的深度学习库,在Linux环境下不需要,需要进行以下修改:
- 查找并删除所有包含
import torch_directml的代码 - 修改separate.py中的
get_gpu_info()函数,移除DirectML相关逻辑
修改后的函数如下:
def get_gpu_info():
directml_device, directml_available = None, False
return directml_device, directml_available
模型性能
经过上述配置后,项目可以在Linux系统上正常运行。测试结果显示:
- 使用的模型:melband_roformer_instvox_duality_v2
- GPU内存占用:约5.6GB
- 处理速度:与Windows平台相当
注意事项
- 目前PyTorch ROCm仅支持Linux和Windows WSL环境
- AMD官方尚未提供Windows原生支持,预计将在未来版本中实现
- 不同ROCm版本可能需要调整对应的PyTorch和ONNX Runtime版本
总结
通过本文介绍的配置方法,用户可以在Linux系统上成功运行Ultimate Vocal Remover GUI项目,并利用AMD GPU进行加速处理。这种方法不仅适用于UVR项目,也为其他需要在Linux环境下使用ROCm进行深度学习应用开发提供了参考方案。随着ROCm生态的不断完善,未来在Linux平台上的深度学习应用部署将会更加便捷。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
131
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
593
129
React Native鸿蒙化仓库
JavaScript
230
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
123
576
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.51 K