Ultimate Vocal Remover GUI项目在Linux系统下的适配方案
2025-05-10 02:01:36作者:俞予舒Fleming
项目背景
Ultimate Vocal Remover GUI(简称UVR)是一款开源的音频处理工具,主要用于从音乐中分离人声和伴奏。该项目最新版本5.6.1 Beta在Windows平台上表现优异,但官方尚未提供对Linux平台的完整支持。本文将详细介绍如何在Linux系统(特别是Ubuntu 24.04.2)上成功运行UVR 5.6.0版本,并利用AMD ROCm技术实现GPU加速。
环境准备
系统要求
- 操作系统:Ubuntu 24.04.2 LTS
- GPU驱动:ROCm 6.4
- Python版本:3.10
基础软件安装
首先需要安装一些基础依赖包:
sudo apt-get install -y python3-pip python3-tk ffmpeg
项目配置步骤
1. 创建Python虚拟环境
使用Anaconda创建隔离的Python环境:
conda create -n uvr python=3.10
conda activate uvr
2. 获取项目代码
克隆特定分支的代码:
git clone -b v5.6.0_roformer_add+directml --single-branch 项目仓库地址
cd ultimatevocalremovergui/
3. PyTorch安装配置
根据ROCm版本安装对应的PyTorch:
pip3 install --pre torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0
4. 解决PyTorch 2.6.0兼容性问题
由于项目最初是为较低版本的PyTorch设计的,需要进行以下修改:
grep -r "torch.load"
在所有找到的文件中添加weights_only=False参数,修改格式为:
torch.load(XXXXX, weights_only=False)
5. ONNX Runtime配置
安装ROCm版本的ONNX Runtime:
pip3 install onnxruntime-rocm
然后将所有CUDAExecutionProvider替换为ROCMExecutionProvider,主要在separate.py文件中。
依赖项调整
修改requirements.txt文件,移除已单独安装的包并更新部分依赖版本。以下是调整后的关键依赖项:
altgraph==0.17.3
audioread==3.0.0
einops==0.6.0
librosa==0.9.2
numpy==1.23.5
onnx
onnxruntime-rocm
pytorch_lightning==2.0.0
scipy==1.10.1
soundfile==0.11.0
安装调整后的依赖:
pip install -r requirements.txt
移除DirectML支持
由于DirectML是微软的深度学习库,在Linux环境下不需要,需要进行以下修改:
- 查找并删除所有包含
import torch_directml的代码 - 修改separate.py中的
get_gpu_info()函数,移除DirectML相关逻辑
修改后的函数如下:
def get_gpu_info():
directml_device, directml_available = None, False
return directml_device, directml_available
模型性能
经过上述配置后,项目可以在Linux系统上正常运行。测试结果显示:
- 使用的模型:melband_roformer_instvox_duality_v2
- GPU内存占用:约5.6GB
- 处理速度:与Windows平台相当
注意事项
- 目前PyTorch ROCm仅支持Linux和Windows WSL环境
- AMD官方尚未提供Windows原生支持,预计将在未来版本中实现
- 不同ROCm版本可能需要调整对应的PyTorch和ONNX Runtime版本
总结
通过本文介绍的配置方法,用户可以在Linux系统上成功运行Ultimate Vocal Remover GUI项目,并利用AMD GPU进行加速处理。这种方法不仅适用于UVR项目,也为其他需要在Linux环境下使用ROCm进行深度学习应用开发提供了参考方案。随着ROCm生态的不断完善,未来在Linux平台上的深度学习应用部署将会更加便捷。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C028
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.25 K
Ascend Extension for PyTorch
Python
231
263
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869