Kohya-ss/sd-scripts项目中B-LoRA技术的实现与应用
2025-06-04 04:48:48作者:房伟宁
技术背景
B-LoRA是一种创新的微调技术,专门针对Stable Diffusion模型进行风格与内容分离训练。这项技术通过在UNet架构的特定区块进行针对性训练,实现了对模型生成内容的精确控制,同时最小化对基础模型风格和构图能力的影响。
技术原理
B-LoRA的核心思想是通过限制LoRA训练的目标模块来实现特定能力的训练:
- 内容训练:主要针对UNet中的
output_blocks.0.1模块 - 风格训练:主要针对UNet中的
output_blocks.1.1模块 - 布局训练:可选择性地包含
input_blocks.8.1模块
这种模块化训练方式相比传统LoRA训练具有明显优势:
- 生成内容更忠实于训练数据
- 对基础模型风格影响更小
- 训练参数更少,效率更高
在Kohya-ss/sd-scripts中的实现
虽然Kohya-ss/sd-scripts原生不支持B-LoRA,但可以通过LyCORIS扩展实现类似功能。以下是关键配置要点:
配置文件设置
enable_conv = false
unet_target_module = []
unet_target_name = ["^(?!.*(ff\\.net|proj)).*output_blocks\\.0\\.1\\..*$"]
text_encoder_target_module = ["CLIPAttention"]
text_encoder_target_name = []
这个配置通过正则表达式精确控制了训练目标模块,排除了不必要的投影层和前馈网络层。
训练参数建议
- 保持
network_alpha等于网络维度 - 推荐使用AdamW优化器
- 设置
network_train_unet_only以匹配B-LoRA默认行为 - 优化器参数建议:
- weight_decay=1e-04
- betas=(0.9,0.999)
- eps=1e-08
高级应用技巧
- 联合训练:可以同时训练内容和风格模块,后期通过工具筛选保留所需特性
- 权重调整:训练完成后可调整不同模块的权重比例
- 现有LoRA改造:可以从常规LoRA中提取特定模块特性
实际效果评估
经过优化配置后,B-LoRA在Kohya中表现:
- 权重可提升至1.0而不产生图像失真
- 训练效率显著提高
- 生成质量与原生B-LoRA实现相当
未来发展方向
- 布局模块的深入应用研究
- 多模块联合训练的优化策略
- 自动化模块选择算法的开发
这项技术为Stable Diffusion模型微调提供了新的可能性,特别是在需要精确控制生成内容特性的应用场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246