lm-evaluation-harness项目中的MATH和HumanEval数据集支持现状
在机器学习领域,评估模型的数学推理和代码生成能力是至关重要的。EleutherAI开源的lm-evaluation-harness项目作为一个强大的评估框架,近期对其支持的数学和编程评估数据集进行了重要更新。
MATH数据集支持情况
该项目目前已经支持两种MATH数据集的变体:
-
hendrycks_math:这是原始的MATH数据集版本,由Hendrycks等人创建,专门用于评估模型在数学问题上的表现。该数据集包含从初级到高级的各类数学题目,涵盖代数、几何、数论等多个数学分支。
-
minerva_math:这是Google Research团队Minerva项目使用的MATH数据集变体。Minerva是一个专注于数学推理的模型,其使用的数据集版本可能包含特定的预处理或格式调整,更适合评估数学专用模型。
这两种变体为研究人员提供了灵活性,可以根据具体需求选择合适的数学评估基准。MATH数据集特别适合评估模型的多步推理能力,因为其中许多问题需要模型展示完整的解题过程而不仅仅是最终答案。
HumanEval数据集支持
关于编程能力评估的HumanEval数据集,项目团队已经通过PR #1992完成了集成工作。HumanEval是评估代码生成模型的重要基准,包含164个手写的编程问题,每个问题都配有测试用例来验证生成代码的正确性。
HumanEval数据集的加入使得lm-evaluation-harness项目现在能够全面评估模型的两个关键能力:
- 数学推理能力(通过MATH数据集)
- 代码生成能力(通过HumanEval数据集)
技术意义
这些评估数据集的集成对AI研究社区具有重要意义:
-
标准化评估:为不同研究团队提供了统一的评估标准,使得模型间的比较更加公平可靠。
-
全面能力测评:现在可以通过一个框架同时评估模型的数学和编程能力,这对于评估通用人工智能系统尤为重要。
-
研究效率提升:研究人员无需自行实现这些复杂数据集的评估流程,可以专注于模型本身的改进。
随着这些功能的加入,lm-evaluation-harness项目进一步巩固了其作为开源社区重要评估工具的地位,为AI模型的全面能力评估提供了坚实基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00