lm-evaluation-harness项目中的MATH和HumanEval数据集支持现状
在机器学习领域,评估模型的数学推理和代码生成能力是至关重要的。EleutherAI开源的lm-evaluation-harness项目作为一个强大的评估框架,近期对其支持的数学和编程评估数据集进行了重要更新。
MATH数据集支持情况
该项目目前已经支持两种MATH数据集的变体:
-
hendrycks_math:这是原始的MATH数据集版本,由Hendrycks等人创建,专门用于评估模型在数学问题上的表现。该数据集包含从初级到高级的各类数学题目,涵盖代数、几何、数论等多个数学分支。
-
minerva_math:这是Google Research团队Minerva项目使用的MATH数据集变体。Minerva是一个专注于数学推理的模型,其使用的数据集版本可能包含特定的预处理或格式调整,更适合评估数学专用模型。
这两种变体为研究人员提供了灵活性,可以根据具体需求选择合适的数学评估基准。MATH数据集特别适合评估模型的多步推理能力,因为其中许多问题需要模型展示完整的解题过程而不仅仅是最终答案。
HumanEval数据集支持
关于编程能力评估的HumanEval数据集,项目团队已经通过PR #1992完成了集成工作。HumanEval是评估代码生成模型的重要基准,包含164个手写的编程问题,每个问题都配有测试用例来验证生成代码的正确性。
HumanEval数据集的加入使得lm-evaluation-harness项目现在能够全面评估模型的两个关键能力:
- 数学推理能力(通过MATH数据集)
- 代码生成能力(通过HumanEval数据集)
技术意义
这些评估数据集的集成对AI研究社区具有重要意义:
-
标准化评估:为不同研究团队提供了统一的评估标准,使得模型间的比较更加公平可靠。
-
全面能力测评:现在可以通过一个框架同时评估模型的数学和编程能力,这对于评估通用人工智能系统尤为重要。
-
研究效率提升:研究人员无需自行实现这些复杂数据集的评估流程,可以专注于模型本身的改进。
随着这些功能的加入,lm-evaluation-harness项目进一步巩固了其作为开源社区重要评估工具的地位,为AI模型的全面能力评估提供了坚实基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00