OpenSPG/KAG项目中的知识图谱抽取器自定义实践
2025-06-01 23:24:50作者:邓越浪Henry
背景介绍
在OpenSPG/KAG项目中,知识图谱抽取器(KAGExtractor)是一个核心组件,负责从文本中提取结构化知识。默认情况下,系统使用SPG_KGPrompt作为抽取模板,但在实际应用中,开发者往往需要根据特定领域需求自定义抽取规则和提示模板。
问题分析
当开发者尝试使用自定义schema(Cust.schema)时,发现系统仍然使用默认的SPG_KGPrompt模板进行知识抽取。这种情况会导致抽取结果不符合预期,特别是当自定义schema与默认模板结构差异较大时。
技术原理
KAGExtractor的工作流程包含几个关键步骤:
- schema验证:系统会检查自定义schema中的类型和属性是否在SPG_KGPrompt的忽略列表中
- 提示模板选择:如果类型或属性不在忽略列表中,系统会继续使用默认模板
- 结果合并:最终结果会将知识图谱抽取结果(kg_result)和命名实体识别结果(ner_result)合并
解决方案
方法一:调整schema定义
开发者可以调整自定义schema的结构,确保其中定义的类型和属性能够被系统正确识别:
- 检查schema中的类型是否在SPG_KGPrompt.ignored_types列表中
- 确认属性定义是否在SPG_KGPrompt.ignored_properties范围内
- 根据项目需求合理设计类型和属性结构
方法二:自定义BuilderChain
对于更复杂的定制需求,开发者可以构建自己的BuilderChain:
- 继承并重写Extractor组件
- 实现自定义的知识抽取逻辑
- 确保输出格式为List[SubGraph],以便后续处理节点使用
典型的处理链顺序为:reader → splitter → extractor → vectorizer → writer,开发者可以在这个链条中插入自定义的抽取器实现。
最佳实践
- 明确需求:在开始定制前,明确知识抽取的具体需求和预期输出格式
- 渐进式开发:先尝试通过调整schema满足需求,必要时再考虑完全自定义
- 测试验证:对自定义组件进行充分测试,确保抽取结果的准确性和一致性
- 性能考量:自定义实现时注意处理效率,特别是处理大规模文本时
总结
OpenSPG/KAG项目提供了灵活的知识图谱构建框架,开发者可以通过多种方式实现知识抽取的自定义需求。理解系统默认行为和工作原理是成功定制的关键,合理选择调整schema或完全自定义实现路径,可以高效地构建符合特定领域需求的知识图谱系统。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1