Guardrails AI项目:自定义验证器的开发与贡献指南
2025-06-11 13:34:54作者:温艾琴Wonderful
验证器架构解析
Guardrails AI Hub中的验证器采用模块化设计架构,每个验证器都是独立的Python模块,通过继承基础验证器类实现特定功能。验证器核心包含三个关键组件:
- 验证逻辑:实现具体的文本/数据校验规则
- 错误处理:定义校验失败时的反馈机制
- 参数配置:支持运行时动态调整验证条件
现有验证器修改实践
以"Two Words"验证器为例,其核心是通过正则表达式匹配单词数量。要扩展为"N Words"验证器,需要修改以下部分:
- 参数化单词数量限制
- 动态生成正则表达式模式
- 更新验证失败提示信息
典型修改示例:
class NWordsValidator(Validator):
def __init__(self, word_count=2, ...):
self.word_count = word_count
self._regex = rf"^\W*(\w+\W+){{{word_count-1}}}\w+\W*$"
def validate(self, text):
if not re.match(self._regex, text):
raise ValidationError(
f"文本必须包含{self.word_count}个单词"
)
自定义验证器开发
开发新验证器推荐采用以下技术路线:
- 环境准备
- 安装Guardrails核心库
- 创建独立Python包
- 继承BaseValidator基类
- 核心开发要点
- 实现validate()方法时必须包含值检查和修正逻辑
- 合理设计配置参数
- 编写完整的类型注解
- 添加详尽的docstring说明
- 测试规范
- 单元测试需覆盖边界条件
- 性能测试确保处理速度
- 集成测试验证与Guardrails的兼容性
验证器发布流程
完成开发后可通过两种方式发布到Hub:
- 完整项目发布
- 使用官方模板仓库初始化项目
- 包含完整的文档和示例
- 通过审核表单提交
- CLI快速发布
- 适用于轻量级验证器
- 需要预先打包为pip可安装格式
- 自动生成基础文档框架
最佳实践建议
- 参数设计应保持最大灵活性
- 错误信息应包含具体修正建议
- 考虑国际化支持需求
- 性能敏感场景应添加缓存机制
- 复杂验证逻辑建议分阶段实现
通过参与验证器开发,开发者不仅可以定制个性化校验规则,还能为AI安全领域做出贡献。Guardrails的开源架构使得功能扩展变得简单高效,是实践AI治理技术的优秀平台。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134