TensorFlow Probability 使用教程
2026-01-16 09:53:29作者:郁楠烈Hubert
项目介绍
TensorFlow Probability(TFP)是一个用于概率推理和统计分析的库。它是TensorFlow生态系统的一部分,旨在与TensorFlow深度学习框架无缝集成。TFP提供了一系列工具,包括概率分布、贝叶斯推理、优化和统计模型,使得用户可以在深度学习模型中融入概率方法。
项目快速启动
安装
首先,确保你已经安装了TensorFlow。然后,可以通过pip安装TensorFlow Probability:
pip install tensorflow-probability
基本示例
以下是一个简单的示例,展示如何使用TFP创建一个正态分布并进行采样:
import tensorflow as tf
import tensorflow_probability as tfp
# 创建一个正态分布
normal_dist = tfp.distributions.Normal(loc=0., scale=1.)
# 从分布中采样
samples = normal_dist.sample(10)
print(samples)
应用案例和最佳实践
贝叶斯线性回归
TFP可以用于实现贝叶斯线性回归模型。以下是一个简单的示例:
import tensorflow as tf
import tensorflow_probability as tfp
# 数据
X = tf.constant([[1.], [2.], [3.], [4.]])
y = tf.constant([[2.], [3.], [4.], [5.]])
# 定义模型
model = tfp.glm.LinearRegression()
# 定义先验
prior = tfp.distributions.Normal(loc=0., scale=1.)
# 定义似然
def likelihood(params):
loc = tf.matmul(X, params[0])
return tfp.distributions.Normal(loc=loc, scale=1.)
# 进行贝叶斯推理
coeffs, linear_response, is_converged, num_iter = tfp.glm.fit(
model_matrix=X,
response=y,
model=model,
prior=prior,
likelihood_fn=likelihood
)
print("Coefficients:", coeffs)
时间序列分析
TFP还可以用于时间序列分析,例如使用隐马尔可夫模型(HMM):
import tensorflow_probability as tfp
# 定义HMM
initial_prob = tf.Variable([0.6, 0.4])
transition_matrix = tf.Variable([[0.7, 0.3], [0.4, 0.6]])
observation_locs = tf.Variable([0.0, 1.0])
observation_scale = tf.Variable(0.5)
hmm = tfp.distributions.HiddenMarkovModel(
initial_distribution=tfp.distributions.Categorical(probs=initial_prob),
transition_distribution=tfp.distributions.Categorical(probs=transition_matrix),
observation_distribution=tfp.distributions.Normal(loc=observation_locs, scale=observation_scale),
num_steps=10
)
# 生成观测序列
observations = hmm.sample()
print("Observations:", observations)
典型生态项目
TensorFlow
TensorFlow Probability与TensorFlow深度学习框架紧密集成,使得用户可以在深度学习模型中融入概率方法。
Edward2
Edward2是一个用于概率建模、推理和批评的Python库。它是TFP的一部分,提供了更高级的概率编程接口。
TFLearn
TFLearn是一个高级神经网络库,它建立在TensorFlow之上,提供了更简洁的API和更多的预定义层和模型。
通过这些生态项目,TFP可以与各种深度学习和概率编程工具结合使用,为用户提供强大的数据分析和模型构建能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135