NFS-子目录外部供应者(NFS-Subdir-External-Provisioner)安装与使用指南
目录结构及介绍
本指南将引导您理解并操作nfs-subdir-external-provisioner项目,这是一个用于Kubernetes环境下的存储供应器,能够基于现有的NFS服务器来创建动态的持久卷。
目录概览
在克隆或下载了该项目之后,您将看到如下的主要目录:
- deploy: 包含了用于部署供应器及其相关资源的所有YAML模板。
deployment.yaml: 供应器实例的部署定义。test-*: 测试脚本和样例持久卷请求(PVC)以及Pod。
- charts: Helm图表用于在Kubernetes集群中以更简洁的方式部署供应器。
- docs: 文档和说明性文件。
- Makefile: 自动化构建、测试和打包任务的定义。
- main.go: 主应用程序代码。
- Dockerfile: Docker镜像的构建脚本。
启动文件介绍
部署前准备: 确保您的环境中已正确设置了Kubernetes集群并具有权限进行API调用。
部署步骤:
-
编辑
deploy/deployment.yaml中的容器图像位置以匹配您的NFS客户端供应器图像的位置。spec: containers: - name: nfs-client-provisioner image: YOUR_IMAGE_NAME其中
YOUR_IMAGE_NAME应替换为您实际使用的图像名称。 -
在
deploy/deployment.yaml中指定NFS服务器详细信息。env: - name: NFS_SERVER value: YOUR_NFS_SERVER_HOSTNAME - name: NFS_PATH value: "/path/on/nfs/server"更新
YOUR_NFS_SERVER_HOSTNAME和路径以反映您的环境。 -
创建服务账号及相关策略:
使用
kubectl apply -f deploy/rbac.yaml来应用RBAC规则。 -
最终通过运行
kubectl apply -f deploy/deployment.yaml来启动供应器。
配置文件介绍
nfs-subdir-external-provisioner的关键配置在于其StorageClass的定义,它决定了如何从NFS服务器创建存储卷。
编辑StorageClass:
-
打开
deploy/storageclass.yaml文件。 -
修改
provisioner字段以匹配您在deployment.yaml中的PROVISIONER_NAME设定值。provisioner: k8s-sigs.io/nfs-subdir-external-provisioner这个字段应同
deployment.yaml内的name一致。 -
根据需求调整参数,例如
onDelete行为决定PVC释放时是否删除对应的NFS子目录。
以上步骤构成了初始化和配置nfs-subdir-external-provisioner的主要流程,在熟悉这些基本操作后,您可以进一步探索高级特性与故障排查方法。
请注意始终检查官方文档以获取最新指导和兼容性注意事项,特别是当涉及到不同版本的Kubernetes与存储类定义时。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00