Wenet项目在鲲鹏CPU上训练时DataLoader多进程问题的分析与解决
问题背景
在使用Wenet语音识别框架进行模型训练时,当运行环境为搭载鲲鹏CPU的服务器时,在训练阶段会出现段错误(Segmentation Fault)。这个问题特别出现在使用PyTorch的DataLoader进行多进程数据加载时。通过分析发现,这是由于鲲鹏CPU架构与PyTorch默认的多进程启动方式存在兼容性问题导致的。
问题现象
当在鲲鹏CPU上运行Wenet的训练脚本时,DataLoader在创建多进程工作线程时会触发段错误。从错误堆栈中可以观察到,问题发生在底层并行计算库的交互过程中,具体是在arm_compute::OMPScheduler调度工作时出现的异常。
根本原因分析
PyTorch的DataLoader默认使用"fork"方式创建多进程,这种方式在大多数x86架构的Linux系统上工作良好。然而在ARM架构的鲲鹏CPU上,"fork"方式可能会导致一些底层库的状态继承问题,特别是涉及到并行计算和内存管理的库。
通过分析堆栈信息,可以确定问题发生在以下环节:
- DataLoader尝试使用默认的"fork"方式创建工作进程
- 工作进程中某些并行计算库(如OpenMP)的状态继承出现问题
- 在执行矩阵乘法等计算操作时触发段错误
解决方案
解决这个问题的有效方法是显式指定DataLoader使用"spawn"方式创建多进程。"spawn"方式会启动全新的Python解释器进程,而不是继承父进程的状态,从而避免了状态继承导致的问题。
具体实现方式是在创建DataLoader时添加multiprocessing_context参数:
import multiprocessing as mp
train_data_loader = DataLoader(
train_dataset,
batch_size=None,
pin_memory=args.pin_memory,
num_workers=args.num_workers,
persistent_workers=True,
generator=generator,
prefetch_factor=args.prefetch,
multiprocessing_context=mp.get_context("spawn")
)
方案优势与注意事项
- 跨平台兼容性:"spawn"方式在Windows、所有POSIX平台和macOS上都能正常工作,具有更好的通用性
- 稳定性:避免了状态继承导致的各种潜在问题
- 性能考量:虽然"spawn"方式在进程启动时会有轻微的性能开销,但对于训练过程的整体影响可以忽略不计
需要注意的是,使用"spawn"方式时,所有传递给工作进程的数据必须是可以pickle序列化的,这在Wenet的数据处理流程中通常不是问题。
结论
对于在ARM架构的鲲鹏CPU上运行Wenet项目的用户,建议在DataLoader中显式指定使用"spawn"方式创建多进程。这一改动简单有效,能够解决训练过程中的段错误问题,同时保持良好的跨平台兼容性。该解决方案已被Wenet项目采纳并合并到主分支中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00