SmartEnum项目与FastEndpoints框架的集成实践
背景介绍
SmartEnum是一个强大的.NET枚举增强库,它提供了类型安全、可扩展的枚举实现方式。在实际开发中,我们经常需要将SmartEnum与Web框架集成,比如流行的FastEndpoints框架。然而,由于SmartEnum的特殊实现方式,在序列化和反序列化过程中可能会遇到一些挑战。
核心问题
当开发者尝试在FastEndpoints中使用包含SmartEnum属性的DTO时,系统可能会抛出反序列化错误。这是因为System.Text.Json默认不知道如何处理SmartEnum类型的转换。
解决方案
1. 实现TryParse方法
首先,我们需要在SmartEnum类中实现TryParse方法,这有助于框架正确解析查询参数:
public sealed class SortOrder : SmartEnum<SortOrder, string>
{
public static readonly SortOrder Asc = new(nameof(Asc), nameof(Asc));
public static readonly SortOrder Desc = new(nameof(Desc), nameof(Desc));
public static bool TryParse(string value, out SortOrder result)
{
return TryFromValue(value, out result);
}
private SortOrder(string name, string value) : base(name, value) { }
}
2. 配置FastEndpoints序列化选项
在应用程序启动时,需要为FastEndpoints配置SmartEnum的转换器:
app.UseFastEndpoints(x =>
{
x.Serializer.Options.Converters.Add(new SmartEnumValueConverter<SortOrder, string>());
x.Serializer.Options.DefaultIgnoreCondition = JsonIgnoreCondition.WhenWritingNull;
});
3. 正确标注DTO属性
根据使用场景的不同,需要为DTO中的SmartEnum属性添加适当的JsonConverter特性:
public class BaseSortPaginatedRequest
{
[QueryParam]
[JsonConverter(typeof(SmartEnumNameConverter<SortOrder, string>))]
public SortOrder? SortOrder { get; set; }
}
注意事项
-
请求与响应处理:不仅请求DTO需要标注JsonConverter,响应DTO中的SmartEnum属性也需要同样的处理。
-
使用场景区分:
- 对于查询参数(QueryParam),建议使用SmartEnumNameConverter
- 对于请求体(Body),SmartEnumValueConverter可能更合适
-
性能考虑:在频繁使用的SmartEnum类型上,可以考虑将转换器实例缓存起来,避免重复创建。
最佳实践建议
-
统一命名规范:为项目中所有的SmartEnum类型统一实现TryParse方法,保持一致性。
-
集中注册:在项目启动时集中注册所有SmartEnum转换器,便于管理。
-
文档记录:在团队内部文档中记录SmartEnum的使用规范,特别是与Web框架集成的部分。
-
单元测试:为SmartEnum的序列化和反序列化编写专门的测试用例,确保在各种场景下都能正常工作。
总结
通过以上方法,开发者可以顺利地在FastEndpoints项目中使用SmartEnum,享受类型安全枚举带来的好处,同时避免序列化相关的问题。这种集成方式不仅适用于FastEndpoints,其原理也可以应用于其他基于System.Text.Json的Web框架。
在实际项目中,建议团队根据具体需求调整实现细节,并建立相应的代码规范和审查机制,确保SmartEnum的正确使用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00