SmartEnum项目与FastEndpoints框架的集成实践
背景介绍
SmartEnum是一个强大的.NET枚举增强库,它提供了类型安全、可扩展的枚举实现方式。在实际开发中,我们经常需要将SmartEnum与Web框架集成,比如流行的FastEndpoints框架。然而,由于SmartEnum的特殊实现方式,在序列化和反序列化过程中可能会遇到一些挑战。
核心问题
当开发者尝试在FastEndpoints中使用包含SmartEnum属性的DTO时,系统可能会抛出反序列化错误。这是因为System.Text.Json默认不知道如何处理SmartEnum类型的转换。
解决方案
1. 实现TryParse方法
首先,我们需要在SmartEnum类中实现TryParse方法,这有助于框架正确解析查询参数:
public sealed class SortOrder : SmartEnum<SortOrder, string>
{
public static readonly SortOrder Asc = new(nameof(Asc), nameof(Asc));
public static readonly SortOrder Desc = new(nameof(Desc), nameof(Desc));
public static bool TryParse(string value, out SortOrder result)
{
return TryFromValue(value, out result);
}
private SortOrder(string name, string value) : base(name, value) { }
}
2. 配置FastEndpoints序列化选项
在应用程序启动时,需要为FastEndpoints配置SmartEnum的转换器:
app.UseFastEndpoints(x =>
{
x.Serializer.Options.Converters.Add(new SmartEnumValueConverter<SortOrder, string>());
x.Serializer.Options.DefaultIgnoreCondition = JsonIgnoreCondition.WhenWritingNull;
});
3. 正确标注DTO属性
根据使用场景的不同,需要为DTO中的SmartEnum属性添加适当的JsonConverter特性:
public class BaseSortPaginatedRequest
{
[QueryParam]
[JsonConverter(typeof(SmartEnumNameConverter<SortOrder, string>))]
public SortOrder? SortOrder { get; set; }
}
注意事项
-
请求与响应处理:不仅请求DTO需要标注JsonConverter,响应DTO中的SmartEnum属性也需要同样的处理。
-
使用场景区分:
- 对于查询参数(QueryParam),建议使用SmartEnumNameConverter
- 对于请求体(Body),SmartEnumValueConverter可能更合适
-
性能考虑:在频繁使用的SmartEnum类型上,可以考虑将转换器实例缓存起来,避免重复创建。
最佳实践建议
-
统一命名规范:为项目中所有的SmartEnum类型统一实现TryParse方法,保持一致性。
-
集中注册:在项目启动时集中注册所有SmartEnum转换器,便于管理。
-
文档记录:在团队内部文档中记录SmartEnum的使用规范,特别是与Web框架集成的部分。
-
单元测试:为SmartEnum的序列化和反序列化编写专门的测试用例,确保在各种场景下都能正常工作。
总结
通过以上方法,开发者可以顺利地在FastEndpoints项目中使用SmartEnum,享受类型安全枚举带来的好处,同时避免序列化相关的问题。这种集成方式不仅适用于FastEndpoints,其原理也可以应用于其他基于System.Text.Json的Web框架。
在实际项目中,建议团队根据具体需求调整实现细节,并建立相应的代码规范和审查机制,确保SmartEnum的正确使用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00