SmartEnum项目与FastEndpoints框架的集成实践
背景介绍
SmartEnum是一个强大的.NET枚举增强库,它提供了类型安全、可扩展的枚举实现方式。在实际开发中,我们经常需要将SmartEnum与Web框架集成,比如流行的FastEndpoints框架。然而,由于SmartEnum的特殊实现方式,在序列化和反序列化过程中可能会遇到一些挑战。
核心问题
当开发者尝试在FastEndpoints中使用包含SmartEnum属性的DTO时,系统可能会抛出反序列化错误。这是因为System.Text.Json默认不知道如何处理SmartEnum类型的转换。
解决方案
1. 实现TryParse方法
首先,我们需要在SmartEnum类中实现TryParse方法,这有助于框架正确解析查询参数:
public sealed class SortOrder : SmartEnum<SortOrder, string>
{
public static readonly SortOrder Asc = new(nameof(Asc), nameof(Asc));
public static readonly SortOrder Desc = new(nameof(Desc), nameof(Desc));
public static bool TryParse(string value, out SortOrder result)
{
return TryFromValue(value, out result);
}
private SortOrder(string name, string value) : base(name, value) { }
}
2. 配置FastEndpoints序列化选项
在应用程序启动时,需要为FastEndpoints配置SmartEnum的转换器:
app.UseFastEndpoints(x =>
{
x.Serializer.Options.Converters.Add(new SmartEnumValueConverter<SortOrder, string>());
x.Serializer.Options.DefaultIgnoreCondition = JsonIgnoreCondition.WhenWritingNull;
});
3. 正确标注DTO属性
根据使用场景的不同,需要为DTO中的SmartEnum属性添加适当的JsonConverter特性:
public class BaseSortPaginatedRequest
{
[QueryParam]
[JsonConverter(typeof(SmartEnumNameConverter<SortOrder, string>))]
public SortOrder? SortOrder { get; set; }
}
注意事项
-
请求与响应处理:不仅请求DTO需要标注JsonConverter,响应DTO中的SmartEnum属性也需要同样的处理。
-
使用场景区分:
- 对于查询参数(QueryParam),建议使用SmartEnumNameConverter
- 对于请求体(Body),SmartEnumValueConverter可能更合适
-
性能考虑:在频繁使用的SmartEnum类型上,可以考虑将转换器实例缓存起来,避免重复创建。
最佳实践建议
-
统一命名规范:为项目中所有的SmartEnum类型统一实现TryParse方法,保持一致性。
-
集中注册:在项目启动时集中注册所有SmartEnum转换器,便于管理。
-
文档记录:在团队内部文档中记录SmartEnum的使用规范,特别是与Web框架集成的部分。
-
单元测试:为SmartEnum的序列化和反序列化编写专门的测试用例,确保在各种场景下都能正常工作。
总结
通过以上方法,开发者可以顺利地在FastEndpoints项目中使用SmartEnum,享受类型安全枚举带来的好处,同时避免序列化相关的问题。这种集成方式不仅适用于FastEndpoints,其原理也可以应用于其他基于System.Text.Json的Web框架。
在实际项目中,建议团队根据具体需求调整实现细节,并建立相应的代码规范和审查机制,确保SmartEnum的正确使用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00