AzurLaneAutoScript 项目中的分辨率适配问题解析
背景介绍
在AzurLaneAutoScript(简称ALAS)自动化脚本项目中,分辨率适配一直是一个关键的技术挑战。该项目最初设计为仅支持1280×720的标准分辨率,这一决策主要基于两个技术考量:一是早期模拟器截图速度限制,二是维护统一标准以降低开发复杂度。
技术挑战
随着模拟器技术的发展,特别是mumu12模拟器引入nemu_ipc截图方案后,截图性能得到显著提升,这使得在更高分辨率下运行脚本成为可能。然而,当用户尝试将分辨率调整为1920×1080时,脚本会出现"Unknown ui page"的错误提示。
这一问题的根源在于ALAS的界面识别机制。系统通过预先定义的模板图片(基于720p分辨率)与实际截图进行匹配,同时依赖固定的坐标位置进行交互操作。当分辨率变化时,虽然UI元素的比例关系保持不变,但绝对坐标位置发生了变化,导致系统无法正确识别当前界面。
技术实现方案分析
对于希望临时使用1080p分辨率的用户,社区成员提出了两种技术解决方案:
- 截图后缩放方案:在获取截图后,立即将图像缩放至1280×720分辨率。这种方法可以保持与原有模板图片的兼容性,但需要注意缩放算法的选择。推荐使用LANCZOS4插值算法以保证图像质量。
self.image = cv2.resize(self.image, (1280, 720), interpolation=cv2.INTER_LANCZOS4)
- 截图函数修改方案:更优的做法是在截图函数内部进行分辨率转换,这样可以避免横竖屏切换带来的额外问题。这种方案需要在获取原始截图后立即执行缩放操作。
项目维护者的考量
尽管技术上可以实现多分辨率支持,但项目维护者坚持单一分辨率标准有其合理性:
-
维护成本:支持多种分辨率意味着需要维护多套模板图片和坐标体系,显著增加开发和测试工作量。
-
边际效益:非标准分辨率用户群体相对较小,投入大量开发资源支持这些边缘用例的性价比不高。
-
标准化:统一的标准分辨率有助于确保所有用户获得一致的体验,减少因环境差异导致的问题报告。
技术建议
对于确实需要在不同分辨率下使用ALAS的高级用户,可以考虑以下技术路线:
-
动态缩放适配层:开发一个中间适配层,自动处理不同分辨率的截图缩放和坐标转换。
-
模板图片生成系统:建立基于矢量或高分辨率源图片的模板生成系统,按需生成不同分辨率的匹配模板。
-
相对坐标系统:重构点击和识别逻辑,使用相对坐标而非绝对坐标,增强对不同分辨率的适应性。
总结
AzurLaneAutoScript项目坚持720p分辨率标准是经过深思熟虑的技术决策,平衡了功能需求与维护成本。虽然通过图像缩放可以实现临时的多分辨率支持,但从项目长期发展角度看,保持标准分辨率仍是更可持续的方案。对于特殊需求的用户,可以基于开源代码自行实现适配层,但需要注意这可能会增加系统复杂度和潜在的错误风险。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00