DeepLabCut 3.0中PyTorch版本数据增强的实践与优化
2025-06-09 13:21:37作者:盛欣凯Ernestine
背景介绍
DeepLabCut作为开源的动物姿态估计工具,在3.0版本中引入了基于PyTorch的实现方案,其中数据增强模块采用了Albumentations库。这一改变带来了更丰富的增强功能,但也存在一些参数命名和实现上的差异,需要用户特别注意。
数据增强的关键变化
水平翻转的参数调整
在3.0版本中,水平翻转的参数从fliplr变更为hflip。这一变化反映了底层实现库的变更。对于不含对称关键点的项目,简单的hflip: true配置即可实现50%概率的随机翻转。而对于包含对称关键点的情况,则需要更详细的配置:
hflip:
p: 0.25
symmetries:
- - 1
- 3
- - 2
- 4
仿射变换的不对称问题
在实现中发现了仿射变换的一个技术细节:旋转参数被对称应用(如-25°到25°),而平移参数却只应用了正向范围(如0到50像素)。这实际上是一个实现上的bug,会在后续版本中修复为对称应用。
数据增强的实践建议
-
水平翻转的合理使用:对于不含对称关键点的项目可以放心使用,但对于对称关键点必须配置正确的对称关系。
-
推理阶段的注意事项:在模型评估阶段不应开启随机翻转,否则会影响性能评估的准确性。
-
增强效果的验证:可以通过可视化方法检查增强效果,确保增强策略符合预期。
增强效果的调试方法
DeepLabCut在训练开始时会打印当前使用的增强策略。用户也可以通过以下Python代码主动检查增强效果:
# 构建数据加载器
loader = DLCLoader(config="path/to/config.yaml", shuffle=1, trainset_index=0)
# 创建增强变换
transform = build_transforms(loader.model_cfg["data"]["train"])
# 创建数据集
pose_task = Task(loader.model_cfg["method"])
train_dataset = loader.create_dataset(transform=transform, mode="train", task=pose_task)
# 反归一化处理
denormalize = transforms.Compose([
transforms.Normalize(mean=[0, 0, 0], std=[1/0.229, 1/0.224, 1/0.225]),
transforms.Normalize(mean=[-0.485, -0.456, -0.406], std=[1, 1, 1]),
])
# 可视化增强效果
def plot_augmented_image(dataset, index):
sample = dataset[index]
img = denormalize(torch.tensor(sample["image"]))
img = img.numpy().transpose((1, 2, 0))
plt.imshow(img)
plt.show()
多次调用此函数查看同一索引的图像,可以观察到不同的随机增强效果。
总结
DeepLabCut 3.0的PyTorch实现提供了更灵活的数据增强方案,但用户需要注意参数命名的变化和实现细节。合理配置增强策略,并通过可视化方法验证效果,可以显著提升模型训练的效果。对于发现的不对称平移问题,建议关注后续版本的修复更新。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868