CVAT项目中如何强制以原始质量显示标注视图中的图像
2025-05-17 12:45:22作者:冯梦姬Eddie
在计算机视觉标注工具CVAT的实际使用过程中,开发者有时需要确保标注界面始终以原始图像质量显示,而不使用压缩版本。本文将详细介绍实现这一需求的技术方案。
问题背景
CVAT默认会在标注视图中提供图像质量切换功能,允许用户在"原始质量"和"压缩质量"之间选择。然而,在某些特定场景下,特别是当CVAT部署在本地网络环境中时,开发者可能希望强制系统始终使用原始质量显示图像,以简化用户操作并确保标注精度。
解决方案
要实现这一功能,需要修改CVAT的源代码并重新构建Docker镜像。以下是具体步骤:
-
定位关键代码文件
需要修改的文件是server-proxy.ts,该文件负责处理前端与后端之间的数据请求。 -
修改请求参数
在文件中找到getData函数,将其中的quality参数固定设置为'original'。修改后的代码片段如下:
async function getData(jid: number, chunk: number, quality: ChunkQuality, retry = 0): Promise<ArrayBuffer> {
const { backendAPI } = config;
try {
const response = await (workerAxios as any).get(`${backendAPI}/jobs/${jid}/data`, {
params: {
...enableOrganization(),
quality: 'original', // 固定为原始质量
type: 'chunk',
number: chunk,
},
responseType: 'arraybuffer',
});
// ...其余代码保持不变
}
// ...异常处理代码
}
- 重新构建Docker镜像
修改代码后,必须重新构建Docker镜像才能使更改生效。使用以下命令:
docker compose -f docker-compose.yml -f docker-compose.dev.yml build
- 重启CVAT服务
构建完成后,重启服务以应用更改:
docker compose down
docker compose up -d
技术原理
这一修改的核心原理是覆盖了CVAT前端请求图像数据时的默认行为。在原始实现中,CVAT会根据用户选择或系统设置动态决定请求图像的压缩级别。通过强制设置quality参数为'original',我们确保了所有图像请求都会获取原始质量版本。
注意事项
-
性能考量:强制使用原始质量可能会增加网络传输负载,特别是在远程访问场景下。但在本地网络环境中,这种影响通常可以忽略。
-
缓存问题:如果修改后仍看到压缩质量的图像,可能是浏览器缓存所致。建议清除缓存或使用无痕模式测试。
-
升级兼容性:此修改属于对核心代码的定制,在CVAT版本升级时可能需要重新应用。
结论
通过上述方法,开发者可以轻松实现CVAT标注界面始终显示原始质量图像的需求。这种定制化方案特别适合对图像质量要求严格且部署在本地环境的标注项目。理解这一实现过程也有助于开发者更深入地掌握CVAT的架构设计和定制方法。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137