深入解析llm.c项目中的Infini-attention实现
2025-05-07 17:51:13作者:余洋婵Anita
在llm.c项目中,开发者breeef实现了一种名为Infini-attention的创新注意力机制,该机制源自论文《Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention》。本文将详细解析这一实现的技术细节。
Infini-attention的核心思想
Infini-attention是一种改进的注意力机制,旨在解决传统Transformer模型在处理长序列时面临的内存和计算效率问题。它通过引入记忆压缩机制,使得模型能够高效地处理无限长度的上下文信息。
关键实现细节
内存管理
实现中使用了两个关键的内存结构:
memory
数组:用于存储压缩后的历史信息zs
数组:作为归一化因子,初始化为1以避免除零错误
核心函数解析
infini_attention_forward
函数是主要实现,包含以下步骤:
- 查询-键值计算:计算查询向量与所有键向量的点积,并应用缩放因子
- Softmax归一化:对注意力分数进行标准化处理
- 值加权求和:计算注意力输出
- 记忆更新:使用ELU+1激活函数更新记忆状态
辅助函数
elu_plus_one
:实现了ELU激活函数并加1的特殊处理softmax
:标准的softmax实现,包含数值稳定性处理initialize_data
和fill_random
:用于初始化和测试数据准备
性能优化考虑
实现中使用了OpenMP并行化技术,通过#pragma omp parallel for collapse(3)
指令对批次、时间步和注意力头进行三重循环并行化,显著提升了计算效率。
测试与验证
在main
函数中,作者设置了简单的测试场景:
- 批次大小B=2
- 序列长度T=10
- 特征维度C=64
- 注意力头数NH=8 通过随机初始化输入数据并运行前向传播,验证了实现的正确性。
技术意义
这一实现为在资源受限环境中部署具有长上下文处理能力的Transformer模型提供了可能。特别值得注意的是:
- 记忆压缩机制大大降低了长序列处理的内存需求
- 并行化实现确保了计算效率
- 数值稳定性处理增强了实现的鲁棒性
该实现展示了如何将前沿研究论文中的理论创新转化为实际可用的代码,为后续模型训练和应用开发奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K