深入解析llm.c项目中的Infini-attention实现
2025-05-07 11:48:14作者:余洋婵Anita
在llm.c项目中,开发者breeef实现了一种名为Infini-attention的创新注意力机制,该机制源自论文《Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention》。本文将详细解析这一实现的技术细节。
Infini-attention的核心思想
Infini-attention是一种改进的注意力机制,旨在解决传统Transformer模型在处理长序列时面临的内存和计算效率问题。它通过引入记忆压缩机制,使得模型能够高效地处理无限长度的上下文信息。
关键实现细节
内存管理
实现中使用了两个关键的内存结构:
memory数组:用于存储压缩后的历史信息zs数组:作为归一化因子,初始化为1以避免除零错误
核心函数解析
infini_attention_forward函数是主要实现,包含以下步骤:
- 查询-键值计算:计算查询向量与所有键向量的点积,并应用缩放因子
- Softmax归一化:对注意力分数进行标准化处理
- 值加权求和:计算注意力输出
- 记忆更新:使用ELU+1激活函数更新记忆状态
辅助函数
elu_plus_one:实现了ELU激活函数并加1的特殊处理softmax:标准的softmax实现,包含数值稳定性处理initialize_data和fill_random:用于初始化和测试数据准备
性能优化考虑
实现中使用了OpenMP并行化技术,通过#pragma omp parallel for collapse(3)指令对批次、时间步和注意力头进行三重循环并行化,显著提升了计算效率。
测试与验证
在main函数中,作者设置了简单的测试场景:
- 批次大小B=2
- 序列长度T=10
- 特征维度C=64
- 注意力头数NH=8 通过随机初始化输入数据并运行前向传播,验证了实现的正确性。
技术意义
这一实现为在资源受限环境中部署具有长上下文处理能力的Transformer模型提供了可能。特别值得注意的是:
- 记忆压缩机制大大降低了长序列处理的内存需求
- 并行化实现确保了计算效率
- 数值稳定性处理增强了实现的鲁棒性
该实现展示了如何将前沿研究论文中的理论创新转化为实际可用的代码,为后续模型训练和应用开发奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178