Probabilistic Machine Learning for Finance and Investing 开源项目教程
1. 项目介绍
本项目是《Probabilistic Machine Learning for Finance and Investing》一书的代码仓库,作者Deepak K. Kanungo通过这个项目提供了多种用于金融和投资领域的概率机器学习方法的实现。这本书以及相应的代码旨在为金融和投资领域的实践者提供一种基于概率机器学习的方法,帮助他们在理解和应用这些复杂概念时更加自信。
2. 项目快速启动
要快速启动本项目,请按照以下步骤操作:
-
克隆项目到本地环境:
git clone https://github.com/dkanungo/Probabilistic-ML-for-finance-and-investing.git cd Probabilistic-ML-for-finance-and-investing -
确保你已经安装了Python环境。项目中的.ipynb文件需要在Jupyter Notebook环境中运行。
-
安装所需的Python库(如果尚未安装):
pip install numpy pandas scipy matplotlib jupyter -
运行任何一个.ipynb文件进行实验。例如,运行
Linear_Regression.ipynb进行线性回归分析:jupyter notebook Linear_Regression.ipynb
3. 应用案例和最佳实践
以下是本项目的一些应用案例和最佳实践:
-
异常检测:
Abnormal_S&P_500.ipynb文件中展示了如何使用概率机器学习进行股票市场异常价格变动的检测。 -
收益预期:
Earnings_expectation.ipynb文件中展示了如何通过概率模型预测公司的收益预期。 -
凯利公式:
KellyCriterion.ipynb文件中介绍了如何在金融投资中应用凯利公式来优化投资比例。 -
蒙特卡洛模拟:
MCS_pi.ipynb文件中展示了如何使用蒙特卡洛方法估计π的值,该方法可以推广到更复杂的金融模型。
4. 典型生态项目
本项目是概率机器学习在金融和投资领域的应用,以下是一些与之相关的典型生态项目:
-
TensorFlow Probability:一个基于TensorFlow的概率机器学习库,提供了多种概率分布和统计模型。
-
PyTorch:一个流行的深度学习框架,也支持概率机器学习的相关应用。
-
scikit-learn:一个广泛使用的机器学习库,其中包含了一些概率机器学习的算法。
-
Quantopian:一个用于量化交易的平台,支持使用Python进行算法交易策略的开发和测试。
以上教程旨在帮助用户快速上手并理解如何使用本项目来进行概率机器学习在金融和投资领域的应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00