Probabilistic Machine Learning for Finance and Investing 开源项目教程
1. 项目介绍
本项目是《Probabilistic Machine Learning for Finance and Investing》一书的代码仓库,作者Deepak K. Kanungo通过这个项目提供了多种用于金融和投资领域的概率机器学习方法的实现。这本书以及相应的代码旨在为金融和投资领域的实践者提供一种基于概率机器学习的方法,帮助他们在理解和应用这些复杂概念时更加自信。
2. 项目快速启动
要快速启动本项目,请按照以下步骤操作:
-
克隆项目到本地环境:
git clone https://github.com/dkanungo/Probabilistic-ML-for-finance-and-investing.git cd Probabilistic-ML-for-finance-and-investing -
确保你已经安装了Python环境。项目中的.ipynb文件需要在Jupyter Notebook环境中运行。
-
安装所需的Python库(如果尚未安装):
pip install numpy pandas scipy matplotlib jupyter -
运行任何一个.ipynb文件进行实验。例如,运行
Linear_Regression.ipynb进行线性回归分析:jupyter notebook Linear_Regression.ipynb
3. 应用案例和最佳实践
以下是本项目的一些应用案例和最佳实践:
-
异常检测:
Abnormal_S&P_500.ipynb文件中展示了如何使用概率机器学习进行股票市场异常价格变动的检测。 -
收益预期:
Earnings_expectation.ipynb文件中展示了如何通过概率模型预测公司的收益预期。 -
凯利公式:
KellyCriterion.ipynb文件中介绍了如何在金融投资中应用凯利公式来优化投资比例。 -
蒙特卡洛模拟:
MCS_pi.ipynb文件中展示了如何使用蒙特卡洛方法估计π的值,该方法可以推广到更复杂的金融模型。
4. 典型生态项目
本项目是概率机器学习在金融和投资领域的应用,以下是一些与之相关的典型生态项目:
-
TensorFlow Probability:一个基于TensorFlow的概率机器学习库,提供了多种概率分布和统计模型。
-
PyTorch:一个流行的深度学习框架,也支持概率机器学习的相关应用。
-
scikit-learn:一个广泛使用的机器学习库,其中包含了一些概率机器学习的算法。
-
Quantopian:一个用于量化交易的平台,支持使用Python进行算法交易策略的开发和测试。
以上教程旨在帮助用户快速上手并理解如何使用本项目来进行概率机器学习在金融和投资领域的应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00