Probabilistic Machine Learning for Finance and Investing 开源项目教程
1. 项目介绍
本项目是《Probabilistic Machine Learning for Finance and Investing》一书的代码仓库,作者Deepak K. Kanungo通过这个项目提供了多种用于金融和投资领域的概率机器学习方法的实现。这本书以及相应的代码旨在为金融和投资领域的实践者提供一种基于概率机器学习的方法,帮助他们在理解和应用这些复杂概念时更加自信。
2. 项目快速启动
要快速启动本项目,请按照以下步骤操作:
-
克隆项目到本地环境:
git clone https://github.com/dkanungo/Probabilistic-ML-for-finance-and-investing.git cd Probabilistic-ML-for-finance-and-investing -
确保你已经安装了Python环境。项目中的.ipynb文件需要在Jupyter Notebook环境中运行。
-
安装所需的Python库(如果尚未安装):
pip install numpy pandas scipy matplotlib jupyter -
运行任何一个.ipynb文件进行实验。例如,运行
Linear_Regression.ipynb进行线性回归分析:jupyter notebook Linear_Regression.ipynb
3. 应用案例和最佳实践
以下是本项目的一些应用案例和最佳实践:
-
异常检测:
Abnormal_S&P_500.ipynb文件中展示了如何使用概率机器学习进行股票市场异常价格变动的检测。 -
收益预期:
Earnings_expectation.ipynb文件中展示了如何通过概率模型预测公司的收益预期。 -
凯利公式:
KellyCriterion.ipynb文件中介绍了如何在金融投资中应用凯利公式来优化投资比例。 -
蒙特卡洛模拟:
MCS_pi.ipynb文件中展示了如何使用蒙特卡洛方法估计π的值,该方法可以推广到更复杂的金融模型。
4. 典型生态项目
本项目是概率机器学习在金融和投资领域的应用,以下是一些与之相关的典型生态项目:
-
TensorFlow Probability:一个基于TensorFlow的概率机器学习库,提供了多种概率分布和统计模型。
-
PyTorch:一个流行的深度学习框架,也支持概率机器学习的相关应用。
-
scikit-learn:一个广泛使用的机器学习库,其中包含了一些概率机器学习的算法。
-
Quantopian:一个用于量化交易的平台,支持使用Python进行算法交易策略的开发和测试。
以上教程旨在帮助用户快速上手并理解如何使用本项目来进行概率机器学习在金融和投资领域的应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00