Lodestar v1.28.0 版本发布:区块链共识客户端的重要更新
Lodestar 是区块链生态系统中的一个重要共识客户端实现,由 ChainSafe 团队开发维护。作为区块链 2.0 信标链的客户端之一,Lodestar 使用 TypeScript 编写,为开发者提供了在 JavaScript/TypeScript 环境中运行区块链共识层的能力。
核心功能更新
本次发布的 v1.28.0 版本带来了多项重要改进,特别是在网络支持和状态管理方面:
-
新增 Hoodi 测试网支持:开发团队添加了对新公共测试网 Hoodi 的支持,使开发者能够在更接近主网的环境中测试应用。Hoodi 测试网使用与主网相同的 MIN_GENESIS_ACTIVE_VALIDATOR_COUNT 参数,确保测试环境的一致性。
-
无效状态根本地持久化:这是一个重要的调试功能增强。当客户端检测到无效的状态根时,会自动将相关状态和区块数据持久化存储在本地
<dataDir>/invalidSszObjects/目录下。这一功能极大地方便了开发者诊断和解决共识问题。 -
Electra 硬分叉支持:为即将到来的 Electra 硬分叉做好了准备,包括区块奖励计算的更新以及在 Chiado 测试网上调度 Electra 分叉的支持。
性能优化与改进
-
本地计算优化:使用原生计算 proposer 和同步委员会,减少了对外部依赖的调用,提高了性能。
-
延迟加载待处理存款:优化了内存使用,只在需要时才加载待处理的存款数据,降低了内存占用。
-
操作池改进:操作池现在能够更灵活地处理延迟到达的 API 认证,并单独跟踪 API 认证的插入结果,提高了系统的健壮性。
错误修复与稳定性增强
-
状态管理修复:修复了多个与状态管理相关的问题,包括处理过去时期的状态、检查点状态的修剪以及种子状态重载等。
-
认证验证修复:修正了在验证 gossip 认证时使用正确子网的问题,确保网络通信的安全性和正确性。
-
执行请求验证:现在会拒绝包含空数据的执行请求,防止潜在的安全问题。
-
类型检查强化:升级到 TypeScript 5.7,增强了类型安全性,减少了运行时错误的可能性。
开发者工具与测试改进
-
开发环境 Docker 支持:新增了 Dockerfile.dev,简化了开发环境的搭建过程。
-
测试覆盖率提升:增加了对 Electra 特定功能的单元测试,如 getAttestationsForBlockElectra 的测试用例。
-
日志增强:为关键操作添加了更详细的日志记录,特别是对于状态重载和认证处理过程,便于问题追踪。
总结
Lodestar v1.28.0 是一个功能丰富且稳定的版本,不仅为即将到来的 Electra 硬分叉做好了准备,还通过多项性能优化和错误修复提升了客户端的可靠性和效率。新增的 Hoodi 测试网支持和无效状态持久化功能将显著改善开发者的体验。对于运行区块链共识节点的用户来说,升级到这个版本是推荐的选择。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00