SphereFormer 项目使用教程
2024-09-26 23:32:26作者:温玫谨Lighthearted
1. 项目目录结构及介绍
SphereFormer 项目的目录结构如下:
SphereFormer/
├── config/
│ ├── nuscenes/
│ ├── semantic_kitti/
│ └── waymo/
├── data/
│ ├── nuscenes_preprocess_infos.py
│ └── waymo_to_semanticKITTI/
├── detection/
├── figs/
├── model/
├── third_party/
│ └── SparseTransformer/
├── util/
├── .gitignore
├── .gitmodules
├── README.md
├── LICENSE
├── requirements.txt
└── train.py
目录结构介绍:
- config/: 包含不同数据集的配置文件,如 nuScenes、SemanticKITTI 和 Waymo。
- data/: 数据预处理脚本和数据集转换脚本。
- detection/: 用于物体检测的相关文件。
- figs/: 可能包含项目中使用的图表或图像。
- model/: 包含模型的定义和实现。
- third_party/: 包含第三方库,如 SparseTransformer。
- util/: 包含项目中使用的各种实用工具和辅助函数。
- .gitignore: Git 忽略文件列表。
- .gitmodules: Git 子模块配置文件。
- README.md: 项目介绍和使用说明。
- LICENSE: 项目许可证文件。
- requirements.txt: 项目依赖库列表。
- train.py: 项目的启动文件,用于训练模型。
2. 项目的启动文件介绍
项目的启动文件是 train.py
,该文件用于训练模型。以下是 train.py
的基本使用方法:
python train.py --config [CONFIG_PATH]
其中 [CONFIG_PATH]
是配置文件的路径,例如:
python train.py --config config/nuscenes/nuscenes_unet32_spherical_transformer.yaml
主要功能:
- 训练模型: 根据指定的配置文件进行模型训练。
- 验证模型: 可以通过修改配置文件中的参数进行模型验证。
3. 项目的配置文件介绍
配置文件位于 config/
目录下,针对不同的数据集有不同的配置文件。以下是配置文件的基本结构和内容:
示例配置文件 (config/nuscenes/nuscenes_unet32_spherical_transformer.yaml
)
data_root: "/path/to/nuscenes"
data_path: "/path/to/nuscenes/v1.0-trainval"
save_dir: "/path/to/save/results"
model:
type: "SphereFormer"
params:
...
train:
batch_size: 4
learning_rate: 0.001
epochs: 50
val:
use_tta: True
vote_num: 5
配置文件主要内容:
- data_root: 数据集的根目录。
- data_path: 数据集的具体路径。
- save_dir: 保存训练结果的目录。
- model: 模型的配置,包括模型类型和参数。
- train: 训练相关的配置,如批量大小、学习率和训练轮数。
- val: 验证相关的配置,如是否使用测试时增强(TTA)和投票次数。
通过修改这些配置文件,可以调整模型的训练和验证行为。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5