llama-cpp-python项目中嵌入模型支持的技术解析
2025-05-26 01:34:17作者:舒璇辛Bertina
背景介绍
llama-cpp-python项目作为llama.cpp的Python绑定,近期在其0.2.44版本中增强了对嵌入模型的支持能力。这一技术演进使得开发者能够更方便地在Python生态中使用各种基于GGUF格式的嵌入模型,如Nomic Embed等。
嵌入模型支持的技术实现
llama-cpp-python通过其高级API提供了两种主要方式来使用嵌入模型:
- 直接嵌入接口:通过
embed
方法获取单个文本的嵌入向量 - 批量嵌入接口:通过
create_embeddings
方法支持批量处理多个文本
底层实现上,项目调用了llama.cpp的llama_get_embeddings_ith
函数,这与llama.cpp自身的embedding.cpp实现保持一致。
典型使用场景
在实际应用中,开发者可以结合LangChain等框架构建完整的检索增强生成(RAG)系统。典型流程包括:
- 文档加载与分割
- 使用嵌入模型生成向量表示
- 建立向量索引库
- 实现检索功能
技术细节与注意事项
- 模型格式要求:必须使用GGUF格式的嵌入模型文件
- 参数配置:需要注意设置
embedding=True
参数启用嵌入功能 - 性能优化:可通过调整
n_batch
参数来优化处理速度 - 版本兼容性:0.2.44版本修复了单字符串输入和池化层相关的问题
实际应用示例
以下是一个完整的RAG系统构建示例:
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import LlamaCppEmbeddings
# 文档加载与处理
loader = WebBaseLoader("技术文章URL")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=500, chunk_overlap=100
)
splits = text_splitter.split_documents(docs)
# 嵌入模型初始化
embd_model_path = "nomic-embed-text-v1.5.f16.gguf"
embedding = LlamaCppEmbeddings(model_path=embd_model_path, n_batch=512)
# 向量存储与检索
vectorstore = Chroma.from_documents(
documents=splits,
collection_name="rag-chroma",
embedding=embedding,
)
retriever = vectorstore.as_retriever()
常见问题解决
开发者在使用过程中可能会遇到"key not found in model: nomic-bert.pooling_layer"等错误,这通常是由于:
- 模型文件不完整或损坏
- 使用了不兼容的模型版本
- llama-cpp-python版本过旧
解决方案包括检查模型文件完整性、更新到最新版本的llama-cpp-python,以及确认模型与框架的兼容性。
未来展望
随着llama-cpp-python对嵌入模型支持的不断完善,我们可以预见:
- 更多类型的嵌入模型将被支持
- 性能优化将持续进行
- 与主流AI框架的集成将更加紧密
这一技术发展为Python生态中的本地化嵌入应用提供了强大支持,使得开发者能够在完全离线的环境中构建高效的语义搜索和RAG系统。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K