Pebble存储引擎中缓存引用标记的性能优化实践
2025-06-08 06:19:54作者:柏廷章Berta
背景
在数据库存储引擎中,缓存管理是影响性能的关键因素之一。Pebble作为CockroachDB的底层存储引擎,采用了Clock-Pro算法来管理缓存替换。该算法通过维护缓存项的引用标记(referenced)来决定哪些数据块可以保留在缓存中。
问题发现
在TPCC基准测试的性能分析中,开发团队注意到一个有趣的现象:缓存命中路径中的referenced.Store(true)原子操作消耗了约0.1%的CPU时间。虽然比例不高,但对于高性能存储引擎来说,任何可优化的热点都值得关注。
深入分析发现,原子存储操作(atomic store)比原子加载(atomic load)代价更高。这是因为:
- 原子加载在x86架构上等同于普通内存读取
- 原子存储则需要使用XCHG指令,并隐含内存屏障(memory barrier)操作
优化思路
在缓存命中路径中,当访问一个缓存块时,会设置其referenced标记为true。然而,如果该标记已经是true,就没有必要再次执行存储操作。通过先检查当前值,可以避免不必要的原子存储操作。
这种优化特别有效,因为:
- 索引和过滤器块的访问频率远高于Clock-Pro算法的完整轮询周期
- 大多数情况下,被访问的块已经设置了referenced标记
实现细节
优化后的逻辑变为:
if !referenced.Load() {
referenced.Store(true)
}
这种"先检查后设置"的模式在并发编程中很常见,它减少了昂贵的原子操作次数。在Pebble的具体实现中,这种优化被应用在缓存块的访问路径上。
性能影响
虽然单个操作的优化看似微小,但在高并发、高频访问的数据库场景中,这种优化可以带来:
- 减少CPU执行指令数量
- 降低内存总线争用
- 减少缓存一致性协议的开销
- 为其他关键路径释放更多CPU资源
总结
这次优化展示了存储引擎开发中的典型性能调优方法:通过细致的性能分析识别热点,理解底层硬件行为,然后实施针对性优化。Pebble团队通过简单的条件检查,避免了不必要的原子操作,体现了对性能细节的极致追求。
这种优化思路可以推广到其他类似场景,特别是在高频访问路径上的标志位更新操作。它提醒我们,在高性能系统开发中,即使是微小的优化,积累起来也能产生显著的性能提升。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178