OpenRLHF多节点训练卡顿问题分析与解决方案
2025-06-02 02:38:17作者:霍妲思
问题背景
在使用OpenRLHF项目进行多节点强化学习训练时,部分用户遇到了训练过程卡顿的问题。具体表现为在模型加载完成后,训练流程停滞不前,无法正常进入训练阶段。该问题主要出现在使用vLLM作为推理后端的场景中。
技术现象分析
从日志信息可以看出,系统在完成以下关键步骤后出现停滞:
- 成功加载自定义奖励函数
- 完成模型权重加载(耗时约279秒)
- 完成vLLM后端初始化
- 建立KV缓存(约218,112 tokens)
- 完成引擎初始化(耗时约102秒)
值得注意的是,当回退到特定版本(commit 367b1d9)时,相同的训练脚本可以正常运行,这表明问题与新版本中的某些改动有关。
根本原因
经过排查,发现问题的根源在于vLLM后端的配置参数。最新版本的OpenRLHF对vLLM的集成方式进行了优化,但需要特定的环境变量配置才能确保多节点环境下的正常运行。
解决方案
要解决此问题,需要在训练前设置以下关键环境变量:
export VLLM_USE_V1=1
export VLLM_ENABLE_V1_MULTIPROCESSING=0
同时在启动训练脚本时添加vLLM同步后端参数:
--vllm_sync_backend nccl
这些配置确保了:
- 使用vLLM的V1版本接口
- 禁用V1版本的多进程模式
- 使用NCCL作为跨节点通信后端
配置建议
对于多节点训练场景,建议采用以下最佳实践配置:
ray job submit --address="http://127.0.0.1:8265" \
-- python -m openrlhf.cli.train_ppo_ray \
--ref_num_nodes 2 \
--ref_num_gpus_per_node 8 \
--reward_num_nodes 0 \
--reward_num_gpus_per_node 0 \
--actor_num_nodes 16 \
--actor_num_gpus_per_node 8 \
--vllm_num_engines 16 \
--vllm_tensor_parallel_size 1 \
--vllm_sync_backend nccl
技术原理
这些配置参数的作用机制如下:
VLLM_USE_V1=1:强制使用vLLM的稳定V1接口,避免新版本可能引入的不稳定性VLLM_ENABLE_V1_MULTIPROCESSING=0:在分布式环境下禁用V1的多进程模式,改用更可靠的Ray分布式框架--vllm_sync_backend nccl:使用NVIDIA的NCCL通信库,优化多GPU节点间的数据传输效率
总结
OpenRLHF项目在多节点强化学习训练方面提供了强大的支持,但在使用最新版本时需要注意vLLM后端的正确配置。通过合理设置环境变量和启动参数,可以确保训练流程的顺利进行。这一经验也提醒我们,在升级深度学习框架时,需要特别关注分布式训练相关的配置变更。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869