探索人脸检测新境界:ExtendedTinyFaces
2024-05-29 11:35:27作者:韦蓉瑛
项目介绍
ExtendedTinyFaces是一个深入研究和应用《寻找微小面孔》(P. Hu)论文的开源项目,专注于在人群密集场景中计数众多面部。这个项目由Alexandre Attia和Sharone Dayan共同发起,是RecVis(MVA)课程的一部分,并且他们的预印本报告已发布在ArXiv上。
项目的核心在于一个深度学习模型,该模型采用了尺度特定的探测器和单一特征层级上的特征定义,以实现尺度不变性、图像分辨率和上下文推理,从而有效地检测图片中的微小对象,尤其是面孔。

项目技术分析
ExtendedTinyFaces采用的方法借鉴了2017年CVPR会议上发布的Tiny Faces算法,其关键创新包括:
- 尺度不变性:通过在不同尺度下训练探测器,适应不同大小的脸部。
- 图像分辨率:调整图像分辨率以平衡检测性能和计算效率。
- 上下文推理:采用foveal描述符,模拟人眼视觉,模糊边缘信息以提供足够的上下文。
项目提供了TensorFlow实现的推理部分,基于cydonia999/Tiny_Faces_in_Tensorflow进行优化。
应用场景与实战
ExtendedTinyFaces不仅限于理论探讨,还提供了实际的应用场景,如:
- 人脸识别基准测试:与Faster R-CNN、MTCNN、Haar Cascade和HOG等其他面部检测模型进行了对比,展示了Tiny Faces的优势和局限性。
- 图像分辨率影响研究:通过实验揭示图像分辨率变化对脸部检测性能的影响。
- 实时视频中的人脸识别与计数:构建了一个Python管线,用于在人员密集的公共场合的视频中识别人脸并统计人数。
项目特点
- 广泛比较:项目对比多种人脸识别算法,为选择最佳解决方案提供了依据。
- 代码可复用:项目提供了易于理解的Python笔记本,便于开发者重复实验或应用于自己的项目。
- 实践导向:通过真实世界的数据集和视频,展示Tiny Faces在复杂场景下的表现。
- 灵活性:项目结构清晰,可轻松扩展到更多应用场景。
要深入了解ExtendedTinyFaces的魅力,不妨亲自尝试该项目,看看如何利用它来改进你的面部检测和识别应用!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178