Tenstorrent TT-Metal v0.58.0-rc14 版本技术解析与架构演进
Tenstorrent TT-Metal 是一个面向高性能计算的硬件加速框架,专注于为AI和机器学习工作负载提供高效的张量处理能力。最新发布的v0.58.0-rc14版本带来了多项重要改进,从底层硬件抽象到上层算子支持都有显著提升。
核心架构改进
本次版本在系统架构层面进行了多项关键优化。最值得注意的是移除了DispatchMemMap单例模式,将其所有权转移至MetalContext,这一改动显著提升了内存管理的灵活性和线程安全性。同时,框架彻底移除了遗留的异步模式API,标志着代码库向更现代化的设计演进。
在硬件支持方面,新版本突破了6U设备的限制,为更大规模的计算集群提供了基础支持。特别值得关注的是新增了对2D Torus拓扑结构的支持,这种网络结构在设备初始化阶段即可配置,为分布式计算场景提供了更灵活的连接方案。
性能优化与内存管理
内存子系统获得了多项增强,DRAM预取器现在支持性能模式,可根据工作负载特性动态调整预取策略。针对持久性缓冲区管理,移除了RMS中tt_stats的持久性缓冲区释放操作,优化了长期运行应用的内存使用效率。
新引入的Watcher机制能够捕获DRAM的noc_inline_dw_write操作,为内存访问模式分析和优化提供了有力工具。在分布式计算方面,改进了reduce scatter操作中接收方/发送方ID围绕集群轴的计算逻辑,消除了代码重复并提高了正确性。
算子与模型支持扩展
框架对多种神经网络算子的支持得到了显著增强。新增了ttnn.experimental.broadcast_to操作的原生支持,为张量广播操作提供了更高效的实现。针对TopK操作,解决了L1缓存限制问题,同时为单核实现提供了专门优化。
在模型支持方面,本次版本特别加强了对计算机视觉模型的优化。YOLOv8s_world和YOLOv8x模型获得了完整的trace性能支持,YOLOv9c模型的性能调优工作也取得了进展。同时,框架新增了对VAE中间块和上采样块的支持,为生成式模型提供了更完整的构建模块。
分布式计算增强
分布式计算能力是本版本的重点改进领域之一。WH/BH架构上实现了原地Halo多播技术,显著降低了分布式计算中的通信开销。AllGather操作现在支持RM输入和隐式tilize输出,为复杂数据布局提供了更灵活的处理方式。
针对大规模模型训练,框架优化了Llama SDPA解码阶段的性能,通过采用16x32分块策略并移除copy_blocks操作,提升了注意力机制的计算效率。同时,matmul操作现在全面支持0D、1D和0V输入,扩展了张量运算的适用场景。
开发者工具与测试改进
为提升开发者体验,新版本引入了ProgramDescriptor结构,为TTNN通用操作提供了更清晰的程序描述接口。性能分析工具现在能够生成每个核心的操作到操作时间CSV报告,为细粒度性能调优提供了数据支持。
测试基础设施也获得了多项改进,包括新增的system_health测试二进制文件,专门针对6U/T3K设备设计。框架还引入了稳定性测试脚本,特别是针对ResNet50模型的长期运行稳定性验证。
总结
Tenstorrent TT-Metal v0.58.0-rc14版本在系统架构、性能优化和功能扩展方面都取得了显著进展。从底层硬件抽象到上层模型支持,从单设备计算到分布式处理,框架展现出了强大的演进能力。特别是对新型硬件拓扑的支持和对复杂神经网络模型的优化,为AI加速领域提供了更强大的基础设施。这些改进不仅提升了框架的性能和稳定性,也为开发者构建更复杂的AI应用提供了更丰富的工具和更灵活的选择。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









