Leantime项目中的仪表盘性能优化实践
2025-06-08 13:34:21作者:卓艾滢Kingsley
性能问题背景
在Leantime项目管理系统中,用户反馈仪表盘页面加载时间过长,有时需要数秒才能完成渲染。经过技术团队分析,发现主要性能瓶颈出现在工单(ticket)数据查询环节,特别是SQL查询中的ORDER BY排序操作。
问题定位与分析
通过性能剖析工具发现,当用户访问仪表盘时,系统需要执行多个包含ORDER BY子句的SQL查询来获取工单数据。这些排序操作在数据库层面执行时消耗了大量资源,特别是在数据量较大的情况下。
ORDER BY操作在数据库查询中通常会导致以下性能问题:
- 需要额外的排序运算,增加CPU负载
- 可能导致临时表创建,增加内存使用
- 可能阻止索引的有效使用
优化方案设计
技术团队提出了将排序逻辑从数据库层迁移到应用层的优化方案。具体实现思路包括:
- 移除SQL中的ORDER BY子句:取消数据库层面的排序操作,改为获取原始数据集
- 应用层排序处理:在PHP应用代码中实现排序逻辑
- 分页优化:结合分页机制,只对当前页需要显示的数据进行排序
技术实现细节
优化后的实现采用了以下技术手段:
- 精简SQL查询:去除所有不必要的排序条件,让数据库专注于数据检索
- 内存排序算法:利用PHP的usort等函数实现高效排序
- 缓存机制:对排序结果进行适当缓存,避免重复计算
优化效果验证
实施优化后,仪表盘加载性能得到显著提升:
- 页面响应时间从数秒降至亚秒级
- 数据库负载明显降低
- 系统整体吞吐量提高
经验总结
这次性能优化实践为Leantime项目积累了宝贵经验:
- 数据库排序并非总是最佳选择,应用层排序在某些场景下更高效
- 性能优化需要结合具体业务场景和数据特点
- 监控和测量是性能优化的基础,必须建立完善的性能评估机制
通过这次优化,Leantime系统为用户提供了更流畅的交互体验,同时也为后续的性能优化工作提供了参考范例。技术团队将继续关注系统性能指标,确保系统在各种使用场景下都能保持高效稳定。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1