Neo4j APOC扩展库集成IBM Watsonx.AI嵌入API的技术解析
随着人工智能技术的快速发展,图数据库与AI模型的结合应用变得越来越普遍。Neo4j作为领先的图数据库平台,其APOC扩展库近期完成了对IBM Watsonx.AI嵌入API的集成,这为开发者提供了更强大的图数据智能处理能力。
技术背景
嵌入(Embedding)是现代AI系统中的核心技术,它能够将文本、图像等非结构化数据转换为数值向量表示。这种向量化的表示方式使得计算机能够更好地理解和处理语义信息,也为图数据库中的相似性搜索、推荐系统等场景提供了新的可能性。
IBM Watsonx.AI作为IBM推出的新一代AI平台,其嵌入API提供了高质量的文本向量化服务。APOC(Awesome Procedures On Cypher)是Neo4j最受欢迎的扩展库之一,它通过封装各种实用过程,极大扩展了Cypher查询语言的能力。
技术实现
APOC扩展库通过新增apoc.ml.watson.embedding过程实现了与Watsonx.AI嵌入API的无缝集成。该实现主要包含以下技术要点:
-
API端点更新:适配Watsonx.AI最新的API接口规范,确保与嵌入服务的稳定通信。
-
认证机制:延续IBM Cloud的IAM安全认证体系,保障API调用的安全性。
-
向量化处理:将文本输入转换为高维向量,保留语义信息的同时适合图数据库存储和计算。
-
性能优化:针对批量文本处理场景进行了性能调优,支持大规模数据的高效嵌入。
应用场景
这一技术集成为Neo4j用户开辟了多个创新应用方向:
-
语义搜索增强:通过比较嵌入向量的相似度,实现基于语义而非关键词的图数据搜索。
-
知识图谱丰富:将非结构化文本转化为可计算的向量表示,丰富知识图谱的维度。
-
推荐系统优化:利用向量相似度计算用户偏好或内容相关性,提升推荐质量。
-
异常检测:通过向量空间中的异常点识别,发现图数据中的异常模式或行为。
使用示例
开发者可以通过简单的Cypher查询调用嵌入功能:
CALL apoc.ml.watson.embedding(
"您的API密钥",
"您的服务URL",
"需要嵌入的文本内容"
) YIELD embedding
返回的embedding结果可以直接存储在节点属性中,或用于后续的图算法计算。
技术展望
这一集成代表了图数据库与AI技术融合的重要一步。未来可能会有更多发展:
- 支持多模态嵌入(如图像、音频等)
- 实现增量式嵌入更新机制
- 开发专为图数据优化的嵌入模型
- 提供嵌入缓存和预处理功能
通过APOC扩展库的这一更新,Neo4j开发者现在可以更便捷地将先进的AI能力整合到图数据应用中,推动更智能的数据分析和应用开发。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00