Django Ninja中使用Pydantic实现嵌套模型序列化
2025-05-28 09:21:03作者:尤峻淳Whitney
在Django Ninja框架中,我们经常需要处理复杂的数据结构序列化问题。本文将介绍如何使用Pydantic模型实现类似Django REST Framework中的嵌套序列化功能,特别是如何将整个数据集传递给嵌套字段。
问题背景
在Web API开发中,我们经常需要将数据库模型转换为JSON格式返回给客户端。有时,我们需要对返回的数据结构进行特殊处理,比如将一个模型实例拆分成多个嵌套对象返回。
模型定义
假设我们有两个相关模型:作者(Author)和博客(Blog),它们之间是一对多的关系:
class Author(models.Model):
username = models.CharField(max_length=100)
email = models.CharField(max_length=100)
# 其他字段...
class Blog(models.Model):
title = models.CharField(max_length=200)
text = models.TextField()
tags = models.CharField(max_length=200)
author = models.ForeignKey(Author, on_delete=models.CASCADE)
# 其他字段...
序列化需求
我们需要将Blog模型实例序列化为以下JSON结构:
{
"author": {
"id": 1,
"username": "jane.doe",
"name": "Jane Doe",
"email": "janedoe@example.com"
},
"blog": {
"id": 1,
"title": "Lorem Ipsum",
"text": "Lorem Ipsum Text"
}
}
解决方案
在Django Ninja中,我们可以使用Pydantic模型和自定义解析方法来实现这一需求:
- 首先创建基础的模型Schema:
from ninja import ModelSchema, Schema
# 作者Schema,排除不需要的字段
class AuthorSchema(ModelSchema):
class Meta:
model = Author
exclude = ["updated", "date_joined"]
# 博客基础Schema,排除作者字段
class BlogBaseSchema(ModelSchema):
class Meta:
model = Blog
exclude = ["author"]
- 然后创建最终的组合Schema,并使用resolve_方法实现特殊逻辑:
class BlogSchema(Schema):
blog: BlogBaseSchema
author: AuthorSchema
@staticmethod
def resolve_blog(self, obj):
# 将整个Blog对象传递给blog字段
return obj
- 在API视图中使用这个Schema:
@api.get("/blog", response=list[BlogSchema])
def list_of_detailed_blogs(request):
return Blog.objects.all()
技术原理
这里的关键点是resolve_blog静态方法。在Django Ninja中,任何以resolve_开头的方法都会被用作对应字段的解析器。在这个例子中:
- 当序列化Blog对象时,Ninja会自动调用
resolve_blog方法 - 该方法接收两个参数:
self是Schema实例,obj是正在被序列化的原始对象 - 我们直接将原始Blog对象返回,这样它会被
BlogBaseSchema序列化 - 对于
author字段,Ninja会自动从Blog实例的author属性获取值并使用AuthorSchema序列化
优势与对比
相比Django REST Framework的实现方式,Django Ninja的这种方案有几个优点:
- 代码更加简洁明了
- 利用了Python的类型提示功能
- 解析逻辑更加灵活可控
- 性能通常更好,因为Pydantic的序列化速度较快
总结
通过使用Django Ninja和Pydantic的resolve方法,我们可以轻松实现复杂的数据结构序列化需求。这种方法不仅保持了代码的简洁性,还提供了足够的灵活性来处理各种特殊场景。对于需要从DRF迁移到Django Ninja的开发者来说,理解这种模式转换非常重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216