Django Ninja中使用Pydantic实现嵌套模型序列化
2025-05-28 07:54:44作者:尤峻淳Whitney
在Django Ninja框架中,我们经常需要处理复杂的数据结构序列化问题。本文将介绍如何使用Pydantic模型实现类似Django REST Framework中的嵌套序列化功能,特别是如何将整个数据集传递给嵌套字段。
问题背景
在Web API开发中,我们经常需要将数据库模型转换为JSON格式返回给客户端。有时,我们需要对返回的数据结构进行特殊处理,比如将一个模型实例拆分成多个嵌套对象返回。
模型定义
假设我们有两个相关模型:作者(Author)和博客(Blog),它们之间是一对多的关系:
class Author(models.Model):
username = models.CharField(max_length=100)
email = models.CharField(max_length=100)
# 其他字段...
class Blog(models.Model):
title = models.CharField(max_length=200)
text = models.TextField()
tags = models.CharField(max_length=200)
author = models.ForeignKey(Author, on_delete=models.CASCADE)
# 其他字段...
序列化需求
我们需要将Blog模型实例序列化为以下JSON结构:
{
"author": {
"id": 1,
"username": "jane.doe",
"name": "Jane Doe",
"email": "janedoe@example.com"
},
"blog": {
"id": 1,
"title": "Lorem Ipsum",
"text": "Lorem Ipsum Text"
}
}
解决方案
在Django Ninja中,我们可以使用Pydantic模型和自定义解析方法来实现这一需求:
- 首先创建基础的模型Schema:
from ninja import ModelSchema, Schema
# 作者Schema,排除不需要的字段
class AuthorSchema(ModelSchema):
class Meta:
model = Author
exclude = ["updated", "date_joined"]
# 博客基础Schema,排除作者字段
class BlogBaseSchema(ModelSchema):
class Meta:
model = Blog
exclude = ["author"]
- 然后创建最终的组合Schema,并使用resolve_方法实现特殊逻辑:
class BlogSchema(Schema):
blog: BlogBaseSchema
author: AuthorSchema
@staticmethod
def resolve_blog(self, obj):
# 将整个Blog对象传递给blog字段
return obj
- 在API视图中使用这个Schema:
@api.get("/blog", response=list[BlogSchema])
def list_of_detailed_blogs(request):
return Blog.objects.all()
技术原理
这里的关键点是resolve_blog静态方法。在Django Ninja中,任何以resolve_开头的方法都会被用作对应字段的解析器。在这个例子中:
- 当序列化Blog对象时,Ninja会自动调用
resolve_blog方法 - 该方法接收两个参数:
self是Schema实例,obj是正在被序列化的原始对象 - 我们直接将原始Blog对象返回,这样它会被
BlogBaseSchema序列化 - 对于
author字段,Ninja会自动从Blog实例的author属性获取值并使用AuthorSchema序列化
优势与对比
相比Django REST Framework的实现方式,Django Ninja的这种方案有几个优点:
- 代码更加简洁明了
- 利用了Python的类型提示功能
- 解析逻辑更加灵活可控
- 性能通常更好,因为Pydantic的序列化速度较快
总结
通过使用Django Ninja和Pydantic的resolve方法,我们可以轻松实现复杂的数据结构序列化需求。这种方法不仅保持了代码的简洁性,还提供了足够的灵活性来处理各种特殊场景。对于需要从DRF迁移到Django Ninja的开发者来说,理解这种模式转换非常重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
517
3.68 K
暂无简介
Dart
759
182
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
874
557
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
Ascend Extension for PyTorch
Python
319
366
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.05 K
521
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
156
React Native鸿蒙化仓库
JavaScript
300
347