Spring AI项目中CassandraChatMemory的架构演进与优化
2025-06-11 01:52:20作者:郜逊炳
背景与挑战
在Spring AI项目中,CassandraChatMemory作为对话记忆存储组件,最初的设计存在一些架构上的局限性。原始实现基于一个简单的表结构,仅支持用户(user)和助手(assistant)两种消息类型的存储,这限制了系统处理更复杂对话场景的能力。
原始架构分析
最初的Cassandra表设计采用四列结构:
- session_id (分区键)
- message_timestamp (聚类键,降序排列)
- assistant (文本类型)
- user (文本类型)
这种设计存在几个明显问题:
- 类型限制:只能存储用户和助手两种消息类型,无法支持系统消息(SystemMessage)和工具消息(ToolMessage)
- 扩展性差:新增消息类型需要修改表结构
- 与MessageWindowChatMemory不兼容:无法满足其依赖的系统消息持久化需求
架构重构方案
开发团队决定对CassandraChatMemory进行重构,主要变更包括:
表结构优化
新的表结构调整为:
- session_id (分区键)
- message_timestamp (聚类键)
- type (消息类型)
- content (消息内容)
这种设计带来以下优势:
- 类型灵活性:通过type字段支持任意类型的消息
- 内容统一存储:所有消息内容统一存储在content字段
- 更好的兼容性:完美支持MessageWindowChatMemory的需求
性能考量
考虑到Cassandra作为非关系型数据库的特性,重构方案特别注重:
- 查询效率:保持session_id作为分区键,确保同一会话的消息物理上存储在一起
- 排序优化:message_timestamp保持降序排列,便于获取最新消息
- 写入性能:优化了批量写入操作
实现细节
重构后的实现重点解决了几个技术难点:
- 消息序列化:采用统一的消息序列化机制,确保不同类型消息都能正确存储和检索
- 时间戳处理:精确控制消息时间戳,避免冲突
- 分页查询:优化大对话历史的检索性能
- 并发控制:处理高并发场景下的消息存储一致性
性能优势
相比其他存储实现,重构后的CassandraChatMemory展现出独特优势:
- 低延迟:充分利用Cassandra的分布式特性
- 高吞吐:批量写入优化显著提高吞吐量
- 线性扩展:随着集群规模扩大,性能可线性提升
应用场景
新的架构特别适合:
- 大规模对话系统
- 需要长期记忆的AI应用
- 高并发聊天场景
- 需要存储多种消息类型的复杂交互
总结
Spring AI项目通过对CassandraChatMemory的重构,不仅解决了原有架构的限制,还充分发挥了Cassandra数据库的优势,为构建高性能、可扩展的AI对话系统提供了坚实基础。这一演进体现了技术选型与架构设计相结合的重要性,也为其他类似项目提供了有价值的参考。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~090CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
137
188

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
885
527

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
368
382

React Native鸿蒙化仓库
C++
183
265

deepin linux kernel
C
22
5

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
735
105

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
53
1

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
400
376