dygraphs R 包使用教程
2025-04-16 03:12:09作者:滕妙奇
1. 项目目录结构及介绍
dygraphs R 包是一个用于生成交互式时间序列图表的R接口,基于 dygraphs JavaScript 库。以下是项目的目录结构及其简要介绍:
dygraphs/
├── .Rbuildignore # 指定在构建包时应该忽略的文件和目录
├── .gitignore # 指定在版本控制中应该忽略的文件和目录
├── DESCRIPTION # 包的描述文件,包含包的元数据
├── LICENSE # 包的许可证文件
├── NAMESPACE # 包的命名空间文件,定义了包的API
├── NEWS.md # 包的更新日志,记录了包的版本更新和变化
├── README.md # 包的说明文件,介绍了包的基本信息和用法
├── dygraphs.Rproj # RStudio 项目文件
├── R/ # 包含R源代码的目录
│ └── dygraphs.R
├── docs/ # 包含包文档的目录
├── inst/ # 安装时将复制到用户库的目录
├── man/ # 包含帮助文件源代码的目录
├── tests/ # 包含测试代码的目录
└── vignettes/ # 包含包的示例文档和教程的目录
2. 项目的启动文件介绍
dygraphs 包的启动文件是 R/ 目录下的 dygraphs.R。这个文件包含了包中的主要函数和类定义。以下是一个简化的例子:
#' dygraph 函数
#'
#' 创建一个交互式时间序列图表
#'
#' @param x 时间序列对象,通常为 xts 类型
#' @param ... 其他参数
#' @export
dygraph <- function(x, ...) {
# 函数实现
}
启动文件中的函数定义通常包含了包的核心功能,用户可以通过调用这些函数来创建和定制图表。
3. 项目的配置文件介绍
dygraphs 包中的配置文件主要包括 DESCRIPTION 和 NAMESPACE。
DESCRIPTION文件包含了包的基本信息,如包的名称、版本、作者、依赖关系等。这是包最重要的配置文件,用于描述包的元数据。
Package: dygraphs
Type: Package
Title: R interface to dygraphs (http://dygraphs.com/)
Version: 1.1.1.6
Date: 2023-01-01
Author: RStudio
Maintainer: RStudio <support@rstudio.org>
Description: An R interface to the dygraphs JavaScript charting library.
License: MIT + file LICENSE
URL: https://github.com/rstudio/dygraphs
Depends: R (>= 3.0.0)
Imports: htmlwidgets
Suggests: ggplot2, dygraphs (>= 1.0.0), knitr, rmarkdown
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.0
NAMESPACE文件定义了包的命名空间,指定了哪些函数和对象是公开的API,以及如何与其他包的命名空间交互。
# 导出函数和对象
export(dygraph)
# 导入其他包的函数和对象
importFrom("htmlwidgets", "HTMLWidget")
这些配置文件对于包的使用和开发都至关重要,它们确保了包的正确安装和使用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
660
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
490
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1