TruLens在LlamaIndex RAG应用中的上下文选择问题解析
2025-07-01 23:56:03作者:滕妙奇
问题背景
在使用TruLens评估LlamaIndex构建的RAG(检索增强生成)应用时,开发者在设置chat_mode="context"
参数时遇到了上下文选择失效的问题。这个问题表现为无法正确获取和评估检索到的上下文内容,导致相关评估指标无法计算。
问题现象
当开发者尝试使用TruLlama.select_source_nodes().node.text
选择上下文内容时,系统报错提示"无法在app/record中定位app.query.rets.source_nodes[:].node.text"。这个问题仅在chat_mode="context"
时出现,而默认模式下工作正常。
技术分析
通过深入分析调用栈记录,我们发现LlamaIndex在chat_mode="context"
下的工作流程与常规模式有所不同:
- 调用路径差异:在context模式下,系统通过
_retriever.retrieve
方法获取内容,而不是常规的query
方法 - 多轮调用问题:检索器可能被多次调用,导致上下文内容分散在多个调用记录中
- 数据结构变化:返回的结果结构可能与传统模式不同,需要调整选择路径
解决方案
针对上述发现,我们推荐以下解决方案:
-
调整选择器路径:将传统的
query.rets
路径替换为_retriever.retrieve.rets
Select.RecordCalls._retriever.retrieve.rets.source_nodes[:].node.text.collect()
-
处理多轮调用:当检索器被多次调用时,可以:
- 指定特定轮次:
[0]
或[1]
- 合并所有结果:
[:]
- 指定特定轮次:
-
完整评估函数示例:
f_groundedness = (
Feedback(provider.groundedness_measure_with_cot_reasons, name="Groundedness")
.on(Select.RecordCalls._retriever.retrieve[:].rets.source_nodes[:].node.text.collect())
.on_output()
)
f_context_relevance = (
Feedback(provider.context_relevance_with_cot_reasons, name="Context Relevance")
.on_input()
.on(Select.RecordCalls._retriever.retrieve[:].rets.source_nodes[:].node.text.collect())
.aggregate(np.mean)
)
最佳实践建议
- 调试技巧:在遇到选择器问题时,可以先打印调用栈信息,了解实际的数据路径
- 版本兼容性:注意不同版本LlamaIndex的API变化,及时调整选择器路径
- 错误处理:对于可能的多轮调用情况,使用
[:]
选择所有结果通常是最安全的选择 - 性能考量:当处理大量上下文时,考虑使用更精确的选择器路径而非通配符,以提高评估效率
通过以上调整,开发者可以顺利在chat_mode="context"
下使用TruLens进行RAG应用的全面评估,获取上下文相关性、答案相关性和事实基础性等关键指标。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8