TruLens在LlamaIndex RAG应用中的上下文选择问题解析
2025-07-01 08:45:58作者:滕妙奇
问题背景
在使用TruLens评估LlamaIndex构建的RAG(检索增强生成)应用时,开发者在设置chat_mode="context"参数时遇到了上下文选择失效的问题。这个问题表现为无法正确获取和评估检索到的上下文内容,导致相关评估指标无法计算。
问题现象
当开发者尝试使用TruLlama.select_source_nodes().node.text选择上下文内容时,系统报错提示"无法在app/record中定位app.query.rets.source_nodes[:].node.text"。这个问题仅在chat_mode="context"时出现,而默认模式下工作正常。
技术分析
通过深入分析调用栈记录,我们发现LlamaIndex在chat_mode="context"下的工作流程与常规模式有所不同:
- 调用路径差异:在context模式下,系统通过
_retriever.retrieve方法获取内容,而不是常规的query方法 - 多轮调用问题:检索器可能被多次调用,导致上下文内容分散在多个调用记录中
- 数据结构变化:返回的结果结构可能与传统模式不同,需要调整选择路径
解决方案
针对上述发现,我们推荐以下解决方案:
-
调整选择器路径:将传统的
query.rets路径替换为_retriever.retrieve.retsSelect.RecordCalls._retriever.retrieve.rets.source_nodes[:].node.text.collect() -
处理多轮调用:当检索器被多次调用时,可以:
- 指定特定轮次:
[0]或[1] - 合并所有结果:
[:]
- 指定特定轮次:
-
完整评估函数示例:
f_groundedness = (
Feedback(provider.groundedness_measure_with_cot_reasons, name="Groundedness")
.on(Select.RecordCalls._retriever.retrieve[:].rets.source_nodes[:].node.text.collect())
.on_output()
)
f_context_relevance = (
Feedback(provider.context_relevance_with_cot_reasons, name="Context Relevance")
.on_input()
.on(Select.RecordCalls._retriever.retrieve[:].rets.source_nodes[:].node.text.collect())
.aggregate(np.mean)
)
最佳实践建议
- 调试技巧:在遇到选择器问题时,可以先打印调用栈信息,了解实际的数据路径
- 版本兼容性:注意不同版本LlamaIndex的API变化,及时调整选择器路径
- 错误处理:对于可能的多轮调用情况,使用
[:]选择所有结果通常是最安全的选择 - 性能考量:当处理大量上下文时,考虑使用更精确的选择器路径而非通配符,以提高评估效率
通过以上调整,开发者可以顺利在chat_mode="context"下使用TruLens进行RAG应用的全面评估,获取上下文相关性、答案相关性和事实基础性等关键指标。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130