TruLens在LlamaIndex RAG应用中的上下文选择问题解析
2025-07-01 09:02:46作者:滕妙奇
问题背景
在使用TruLens评估LlamaIndex构建的RAG(检索增强生成)应用时,开发者在设置chat_mode="context"参数时遇到了上下文选择失效的问题。这个问题表现为无法正确获取和评估检索到的上下文内容,导致相关评估指标无法计算。
问题现象
当开发者尝试使用TruLlama.select_source_nodes().node.text选择上下文内容时,系统报错提示"无法在app/record中定位app.query.rets.source_nodes[:].node.text"。这个问题仅在chat_mode="context"时出现,而默认模式下工作正常。
技术分析
通过深入分析调用栈记录,我们发现LlamaIndex在chat_mode="context"下的工作流程与常规模式有所不同:
- 调用路径差异:在context模式下,系统通过
_retriever.retrieve方法获取内容,而不是常规的query方法 - 多轮调用问题:检索器可能被多次调用,导致上下文内容分散在多个调用记录中
- 数据结构变化:返回的结果结构可能与传统模式不同,需要调整选择路径
解决方案
针对上述发现,我们推荐以下解决方案:
-
调整选择器路径:将传统的
query.rets路径替换为_retriever.retrieve.retsSelect.RecordCalls._retriever.retrieve.rets.source_nodes[:].node.text.collect() -
处理多轮调用:当检索器被多次调用时,可以:
- 指定特定轮次:
[0]或[1] - 合并所有结果:
[:]
- 指定特定轮次:
-
完整评估函数示例:
f_groundedness = (
Feedback(provider.groundedness_measure_with_cot_reasons, name="Groundedness")
.on(Select.RecordCalls._retriever.retrieve[:].rets.source_nodes[:].node.text.collect())
.on_output()
)
f_context_relevance = (
Feedback(provider.context_relevance_with_cot_reasons, name="Context Relevance")
.on_input()
.on(Select.RecordCalls._retriever.retrieve[:].rets.source_nodes[:].node.text.collect())
.aggregate(np.mean)
)
最佳实践建议
- 调试技巧:在遇到选择器问题时,可以先打印调用栈信息,了解实际的数据路径
- 版本兼容性:注意不同版本LlamaIndex的API变化,及时调整选择器路径
- 错误处理:对于可能的多轮调用情况,使用
[:]选择所有结果通常是最安全的选择 - 性能考量:当处理大量上下文时,考虑使用更精确的选择器路径而非通配符,以提高评估效率
通过以上调整,开发者可以顺利在chat_mode="context"下使用TruLens进行RAG应用的全面评估,获取上下文相关性、答案相关性和事实基础性等关键指标。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134