R-graph-gallery 项目教程
1. 项目介绍
R-graph-gallery 是一个展示使用 R 语言创建的各种图表的网站。该项目由 holtzy 创建并维护,旨在帮助 R 语言用户通过实例学习和实践数据可视化技术。网站上展示了数百种图表,每种图表都附带了可复现的代码,用户可以直接使用这些代码来创建自己的图表。
2. 项目快速启动
2.1 安装 R 和 RStudio
首先,确保你已经安装了 R 和 RStudio。你可以从以下链接下载并安装:
2.2 克隆项目仓库
使用 Git 克隆 R-graph-gallery 项目到本地:
git clone https://github.com/holtzy/R-graph-gallery.git
2.3 运行示例代码
进入项目目录,找到你感兴趣的图表示例,例如 13-scatter-plot_files/13-scatter-plot.R,然后在 RStudio 中打开并运行该脚本。
# 示例代码:散点图
library(ggplot2)
# 创建数据
data <- data.frame(x = rnorm(100), y = rnorm(100))
# 绘制散点图
ggplot(data, aes(x = x, y = y)) +
geom_point()
3. 应用案例和最佳实践
3.1 数据分布可视化
使用 R-graph-gallery 中的示例代码,你可以轻松创建各种数据分布图,如直方图、密度图和箱线图。这些图表可以帮助你快速了解数据的分布情况。
# 示例代码:直方图
ggplot(data, aes(x = x)) +
geom_histogram(binwidth = 0.5, fill = "blue", color = "black")
3.2 时间序列分析
对于时间序列数据,R-graph-gallery 提供了多种图表类型,如折线图、面积图和流图。这些图表可以帮助你分析数据随时间的变化趋势。
# 示例代码:折线图
data <- data.frame(time = 1:100, value = cumsum(rnorm(100)))
ggplot(data, aes(x = time, y = value)) +
geom_line()
3.3 地理数据可视化
R-graph-gallery 还包含了地理数据的可视化示例,如地图、热力图和流向图。这些图表可以帮助你分析地理数据的空间分布和变化。
# 示例代码:地图
library(maps)
library(ggplot2)
world_map <- map_data("world")
ggplot(world_map, aes(x = long, y = lat, group = group)) +
geom_polygon(fill = "white", color = "black")
4. 典型生态项目
4.1 ggplot2
ggplot2 是 R 语言中最流行的数据可视化包之一,R-graph-gallery 中的大部分图表都是使用 ggplot2 创建的。学习 ggplot2 可以帮助你更好地理解和使用 R-graph-gallery 中的示例代码。
4.2 plotly
plotly 是一个用于创建交互式图表的 R 包。R-graph-gallery 中的一些示例代码使用了 plotly 来创建交互式图表,这对于需要动态展示数据的用户非常有用。
4.3 leaflet
leaflet 是一个用于创建交互式地图的 R 包。R-graph-gallery 中的一些地理数据可视化示例使用了 leaflet,帮助用户创建动态地图。
通过这些生态项目的结合使用,你可以创建出更加复杂和功能丰富的数据可视化图表。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00