SM3Det 项目启动与配置教程
2025-05-06 07:28:58作者:裘晴惠Vivianne
1. 项目目录结构及介绍
SM3Det项目的目录结构如下:
SM3Det/
│
├── data/ # 存储训练和测试数据
│ ├── annotations/ # 存储标注信息
│ └── images/ # 存储图片数据
│
├── docs/ # 项目文档
│
├── models/ # 存储预训练模型和模型定义
│
├── scripts/ # 存储脚本,如数据预处理、训练、测试等
│
├── src/ # 源代码目录
│ ├── __init__.py
│ ├── dataset.py # 数据集加载和预处理
│ ├── model.py # 模型定义
│ ├── trainer.py # 训练器定义
│ └── utils.py # 工具函数
│
├── tests/ # 单元测试和集成测试
│
├── requirements.txt # 项目依赖
│
└── train.py # 项目启动和训练文件
每个目录和文件的功能简要说明如下:
data/
: 存储项目所需的数据集,分为标注信息和图片数据。docs/
: 存储项目文档,便于用户和开发者阅读。models/
: 存储预训练的模型权重和模型架构定义。scripts/
: 存储执行项目过程中可能需要的各种脚本,例如数据预处理、模型训练等。src/
: 源代码目录,包含数据集加载、模型定义、训练逻辑和工具类等。tests/
: 用于存放项目的单元测试和集成测试代码。requirements.txt
: 记录项目依赖,便于环境搭建。train.py
: 项目的主入口,用于启动和配置模型的训练过程。
2. 项目的启动文件介绍
项目的启动文件是train.py
。该文件包含了项目的主要执行逻辑,用于启动模型的训练过程。以下是train.py
文件的主要内容:
import argparse
from src.trainer import Trainer
def main():
parser = argparse.ArgumentParser(description="SM3Det Training")
# 这里添加了必要的命令行参数解析
args = parser.parse_args()
# 创建训练器实例
trainer = Trainer(args)
# 启动训练过程
trainer.train()
if __name__ == "__main__":
main()
train.py
文件通过解析命令行参数获取用户输入的配置信息,然后创建一个Trainer
对象,并调用其train
方法来启动训练。
3. 项目的配置文件介绍
项目的配置文件通常以.yaml
或.json
等格式存在,用于存储项目运行时的配置参数。在SM3Det项目中,配置文件可能会被放置在src/
目录下,或者在命令行参数中被指定。
配置文件通常包含以下内容:
- 数据集路径
- 模型参数,如学习率、批次大小、迭代次数等
- 训练过程中的优化器和学习率调度器配置
- 模型保存和加载的路径
配置文件的一个简单示例可能如下所示:
train:
dataset_path: ./data/images/
annotation_path: ./data/annotations/
batch_size: 32
learning_rate: 0.001
epochs: 10
model:
name: SM3Det
backbone: ResNet50
pretrained: True
optimizer:
name: Adam
scheduler:
name: StepLR
step_size: 30
gamma: 0.1
checkpoint:
path: ./checkpoints/
save_frequency: 5
在train.py
中,这些配置将被读取并应用到训练过程中,确保模型能够按照预定的参数进行训练。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0287- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
852
505

deepin linux kernel
C
21
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
240
283

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
614
74

React Native鸿蒙化仓库
C++
175
260

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.07 K