SM3Det 项目启动与配置教程
2025-05-06 06:51:03作者:裘晴惠Vivianne
1. 项目目录结构及介绍
SM3Det项目的目录结构如下:
SM3Det/
│
├── data/ # 存储训练和测试数据
│ ├── annotations/ # 存储标注信息
│ └── images/ # 存储图片数据
│
├── docs/ # 项目文档
│
├── models/ # 存储预训练模型和模型定义
│
├── scripts/ # 存储脚本,如数据预处理、训练、测试等
│
├── src/ # 源代码目录
│ ├── __init__.py
│ ├── dataset.py # 数据集加载和预处理
│ ├── model.py # 模型定义
│ ├── trainer.py # 训练器定义
│ └── utils.py # 工具函数
│
├── tests/ # 单元测试和集成测试
│
├── requirements.txt # 项目依赖
│
└── train.py # 项目启动和训练文件
每个目录和文件的功能简要说明如下:
data/: 存储项目所需的数据集,分为标注信息和图片数据。docs/: 存储项目文档,便于用户和开发者阅读。models/: 存储预训练的模型权重和模型架构定义。scripts/: 存储执行项目过程中可能需要的各种脚本,例如数据预处理、模型训练等。src/: 源代码目录,包含数据集加载、模型定义、训练逻辑和工具类等。tests/: 用于存放项目的单元测试和集成测试代码。requirements.txt: 记录项目依赖,便于环境搭建。train.py: 项目的主入口,用于启动和配置模型的训练过程。
2. 项目的启动文件介绍
项目的启动文件是train.py。该文件包含了项目的主要执行逻辑,用于启动模型的训练过程。以下是train.py文件的主要内容:
import argparse
from src.trainer import Trainer
def main():
parser = argparse.ArgumentParser(description="SM3Det Training")
# 这里添加了必要的命令行参数解析
args = parser.parse_args()
# 创建训练器实例
trainer = Trainer(args)
# 启动训练过程
trainer.train()
if __name__ == "__main__":
main()
train.py文件通过解析命令行参数获取用户输入的配置信息,然后创建一个Trainer对象,并调用其train方法来启动训练。
3. 项目的配置文件介绍
项目的配置文件通常以.yaml或.json等格式存在,用于存储项目运行时的配置参数。在SM3Det项目中,配置文件可能会被放置在src/目录下,或者在命令行参数中被指定。
配置文件通常包含以下内容:
- 数据集路径
- 模型参数,如学习率、批次大小、迭代次数等
- 训练过程中的优化器和学习率调度器配置
- 模型保存和加载的路径
配置文件的一个简单示例可能如下所示:
train:
dataset_path: ./data/images/
annotation_path: ./data/annotations/
batch_size: 32
learning_rate: 0.001
epochs: 10
model:
name: SM3Det
backbone: ResNet50
pretrained: True
optimizer:
name: Adam
scheduler:
name: StepLR
step_size: 30
gamma: 0.1
checkpoint:
path: ./checkpoints/
save_frequency: 5
在train.py中,这些配置将被读取并应用到训练过程中,确保模型能够按照预定的参数进行训练。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
187
206
暂无简介
Dart
630
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.63 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
292
104
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
267
仓颉编译器源码及 cjdb 调试工具。
C++
128
858