SM3Det 项目启动与配置教程
2025-05-06 16:46:16作者:裘晴惠Vivianne
1. 项目目录结构及介绍
SM3Det项目的目录结构如下:
SM3Det/
│
├── data/ # 存储训练和测试数据
│ ├── annotations/ # 存储标注信息
│ └── images/ # 存储图片数据
│
├── docs/ # 项目文档
│
├── models/ # 存储预训练模型和模型定义
│
├── scripts/ # 存储脚本,如数据预处理、训练、测试等
│
├── src/ # 源代码目录
│ ├── __init__.py
│ ├── dataset.py # 数据集加载和预处理
│ ├── model.py # 模型定义
│ ├── trainer.py # 训练器定义
│ └── utils.py # 工具函数
│
├── tests/ # 单元测试和集成测试
│
├── requirements.txt # 项目依赖
│
└── train.py # 项目启动和训练文件
每个目录和文件的功能简要说明如下:
data/: 存储项目所需的数据集,分为标注信息和图片数据。docs/: 存储项目文档,便于用户和开发者阅读。models/: 存储预训练的模型权重和模型架构定义。scripts/: 存储执行项目过程中可能需要的各种脚本,例如数据预处理、模型训练等。src/: 源代码目录,包含数据集加载、模型定义、训练逻辑和工具类等。tests/: 用于存放项目的单元测试和集成测试代码。requirements.txt: 记录项目依赖,便于环境搭建。train.py: 项目的主入口,用于启动和配置模型的训练过程。
2. 项目的启动文件介绍
项目的启动文件是train.py。该文件包含了项目的主要执行逻辑,用于启动模型的训练过程。以下是train.py文件的主要内容:
import argparse
from src.trainer import Trainer
def main():
parser = argparse.ArgumentParser(description="SM3Det Training")
# 这里添加了必要的命令行参数解析
args = parser.parse_args()
# 创建训练器实例
trainer = Trainer(args)
# 启动训练过程
trainer.train()
if __name__ == "__main__":
main()
train.py文件通过解析命令行参数获取用户输入的配置信息,然后创建一个Trainer对象,并调用其train方法来启动训练。
3. 项目的配置文件介绍
项目的配置文件通常以.yaml或.json等格式存在,用于存储项目运行时的配置参数。在SM3Det项目中,配置文件可能会被放置在src/目录下,或者在命令行参数中被指定。
配置文件通常包含以下内容:
- 数据集路径
- 模型参数,如学习率、批次大小、迭代次数等
- 训练过程中的优化器和学习率调度器配置
- 模型保存和加载的路径
配置文件的一个简单示例可能如下所示:
train:
dataset_path: ./data/images/
annotation_path: ./data/annotations/
batch_size: 32
learning_rate: 0.001
epochs: 10
model:
name: SM3Det
backbone: ResNet50
pretrained: True
optimizer:
name: Adam
scheduler:
name: StepLR
step_size: 30
gamma: 0.1
checkpoint:
path: ./checkpoints/
save_frequency: 5
在train.py中,这些配置将被读取并应用到训练过程中,确保模型能够按照预定的参数进行训练。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355