Plausible Analytics中追踪请求头的方法解析
2025-05-09 08:57:06作者:庞队千Virginia
在Plausible Analytics项目中,开发者有时需要调试和分析传入请求的HTTP头信息。本文将详细介绍如何在Plausible环境中设置请求头追踪功能。
背景介绍
Plausible Analytics是一个开源的网站分析工具,采用Elixir语言开发。当开发者需要调试请求处理逻辑或验证反向代理配置时,查看实际的请求头信息是非常有用的。
追踪方法详解
进入Plausible的交互式环境
首先需要通过Docker进入Plausible的远程控制台:
cd hosting
docker compose exec plausible bin/plausible remote
这个命令会启动一个Elixir的交互式环境(IEx),允许开发者直接与运行中的Plausible应用交互。
设置请求头追踪
在IEx环境中,可以使用Elixir强大的元编程和调试工具来追踪请求头。以下是具体的追踪代码:
# 定义格式化函数,提取请求头
headers = fn {:trace, _pid, :call, {_mod, _fun, [%Plug.Conn{req_headers: headers}]}} ->
inspect(headers)
end
# 指定要追踪的模块和函数
mod_fun_args = {PlausibleWeb.RemoteIP, :get, 1}
# 设置追踪次数
how_many_times = 5
# 启动追踪
:recon_trace.calls(mod_fun_args, how_many_times, formatter: headers)
这段代码使用了Erlang的recon库来进行函数调用追踪。它会监控PlausibleWeb.RemoteIP.get/1函数的调用,并在每次调用时打印出传入的HTTP请求头。
测试验证
为了验证追踪是否生效,可以使用curl发送测试请求:
curl http://localhost:8000/api/event \
-d '{"name": "pageview","url":"https://dummy.site/baldur","domain":"dummy.site","referrer":null,"screen_width":520}' \
-H 'content-type: application/json'
预期的输出会显示请求中包含的所有HTTP头,例如:
[{"accept", "*/*"}, {"content-length", "111"}, {"content-type", "application/json"}, {"host", "localhost:8000"}, {"user-agent", "curl/7.86.0"}]
技术原理
这种方法利用了Elixir/Erlang强大的运行时自省能力:
-
Plug.Conn结构体:Elixir的Plug框架使用这个结构体来表示HTTP连接,其中req_headers字段存储了所有请求头。
-
recon_trace模块:来自recon库,是Erlang生态系统中最强大的诊断工具之一,可以追踪函数调用而不需要修改源代码。
-
模式匹配:Elixir的模式匹配能力使得我们可以精确地提取出需要的请求头信息。
应用场景
这种追踪技术特别适用于以下情况:
- 验证反向代理是否正确转发请求头
- 调试自定义中间件的行为
- 检查客户端发送的实际请求头
- 诊断与IP地址检测相关的问题
注意事项
- 在生产环境中使用这种追踪时要谨慎,可能会影响性能
- 追踪完成后应该及时关闭,避免不必要的资源消耗
- 确保有足够的权限访问Docker容器和IEx环境
通过这种方法,Plausible开发者可以深入了解请求处理流程,快速定位与HTTP头相关的问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355