电影剧本数据库:构建AI训练与影视分析的终极语料库
电影剧本数据集在现代影视研究和人工智能训练中扮演着至关重要的角色。今天我们要介绍的《电影剧本数据库》作为一个开源项目,致力于从多个权威来源收集2500+电影剧本,并将其转化为结构化的文本格式,为研究人员、开发者和电影爱好者提供了宝贵的资源库。这个强大的语料库不仅支持AI对话系统训练,还为影视叙事分析和编剧教育提供了坚实基础。
🎬 多源数据采集与智能处理流程
该项目实现了从九个主流剧本网站的自动化采集,包括IMSDb、Dailyscript、Awesomefilm等知名平台。通过精心设计的四步处理流程:脚本采集、元数据整合、去重处理和剧本解析,确保最终输出的数据集具有高度的完整性和准确性。
自动化数据采集系统采用并行处理技术,支持HTML、TXT、DOC和PDF多种格式的剧本下载。对于PDF和DOC格式的文档,项目集成textract库实现智能文本提取,确保非标准格式剧本的顺利转换。
智能元数据融合是项目的核心特色之一。通过TMDb和IMDb的双重元数据验证,每个剧本都包含详细的电影信息,包括标题、上映日期、剧情概要等关键字段,为后续的数据分析提供丰富上下文。
📊 结构化解析与深度语义标注
项目采用先进的自然语言处理技术,对剧本进行深度结构化解析。解析后的剧本分为三个层次:
- 标签化版本:每个剧本行都被精确标注为场景(S)、场景描述(N)、角色(C)、对话(D)、对话元数据(E)、转场(T)和元数据(M)七大类
- 对话精简版本:提取纯角色对话数据,格式化为"角色=>对话"的标准格式
- 角色统计版本:生成每个角色的台词量统计,便于人物分析
这种多层次的结构化处理使得数据集不仅适用于基础的文本分析,更能支持复杂的语义理解和角色关系研究。
🚀 多样化应用场景与价值体现
AI对话系统训练:2500+剧本提供的海量对话数据是训练自然语言处理模型的理想语料,特别适合生成式AI的角色对话模拟训练。
影视叙事分析:研究者可以通过分析不同年代、类型电影的剧本结构,探索叙事模式的变化和演进规律。
编剧教育工具: aspiring编剧可以学习经典剧本的结构安排、对话写作技巧和角色塑造方法。
跨文化比较研究:数据集涵盖多种类型和国家的电影,为跨文化叙事比较提供坚实基础。
💡 技术架构优势与扩展性
项目的模块化设计允许轻松扩展新的数据源。每个数据采集模块都采用统一的接口标准,新的剧本网站可以通过实现标准接口快速集成。
开源特性使得社区可以共同完善数据集,持续增加新的剧本资源和改进数据处理算法。项目提供的完整元数据结构和解析工具链,为后续的深度分析应用奠定了坚实基础。
📋 快速开始指南
要开始使用这个强大的电影剧本数据库,只需执行以下简单步骤:
-
克隆项目仓库:
git clone https://gitcode.com/gh_mirrors/mo/Movie-Script-Database -
安装依赖包:
cd Movie-Script-Database pip install -r requirements.txt -
运行数据采集:
python get_scripts.py python get_metadata.py python parse_files.py
通过《电影剧本数据库》,我们不仅提供了一个高质量的数据集,更构建了一个可持续发展的电影文本分析生态系统,为影视研究和人工智能发展注入新的活力。无论你是AI开发者、影视研究者还是编剧爱好者,这个项目都将成为你不可或缺的强大工具!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00