LegendState项目中动态参数化Observable的实现方案
2025-06-20 17:21:13作者:戚魁泉Nursing
在LegendState状态管理库中,Observable是核心概念之一,它允许开发者创建响应式数据源。但在实际开发中,我们经常需要根据动态参数创建不同的Observable实例。本文将深入探讨如何在LegendState中实现参数化Observable。
问题背景
当使用LegendState的Observable时,开发者可能会遇到需要根据动态参数创建不同数据源的情况。例如,在用户管理系统中,我们需要根据用户ID获取不同用户的数据。传统的Observable声明方式无法直接接受参数,这就导致了如何实现参数化Observable的问题。
解决方案:Lookup Table模式
LegendState提供了Lookup Table(查找表)模式,这是解决参数化Observable需求的优雅方案。Lookup Table本质上是一个函数式Observable,它可以根据传入的参数动态创建和管理子Observable。
基本实现方式
const users = observable((uid: string) =>
customSynced({
supabase,
collection: 'user',
select: (from) => from.select('*').eq('id', uid),
realtime: true,
actions: ['create', 'read', 'update', 'delete'],
persist: {
name: 'user',
retrySync: true,
},
retry: {
infinite: true,
},
}),
);
嵌套在对象中的实现
Lookup Table也可以作为对象属性的形式存在:
const store$ = observable({
users: (id: string) => customSynced({
// 配置项
})
})
使用方式
创建Lookup Table后,可以通过以下方式访问特定参数对应的Observable:
// 获取ID为123的用户数据
users['123'].get()
技术优势
- 按需创建:只有当访问特定键时才会创建对应的Observable实例
- 自动缓存:相同参数的多次访问会返回同一个Observable实例
- 内存高效:避免了重复创建相同参数的Observable
- 类型安全:在TypeScript中能获得完整的类型提示
实现原理
Lookup Table内部维护了一个键值映射表,当访问特定键时:
- 检查该键是否已存在对应的Observable
- 如果不存在,调用工厂函数创建新的Observable并缓存
- 返回缓存或新创建的Observable实例
这种机制确保了相同参数总是返回同一个Observable,同时又能动态创建新的实例。
适用场景
这种模式特别适合以下场景:
- 用户管理系统(按用户ID)
- 商品详情页(按商品ID)
- 任何需要根据参数动态获取数据的场景
总结
LegendState的Lookup Table模式为参数化Observable提供了优雅的解决方案,它结合了动态创建和高效缓存的优点,是处理参数化数据源的理想选择。开发者可以借助这一特性构建更加灵活和高效的响应式应用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251