Rust-for-Linux:在C内核模块中集成Rust代码的技术实践
在Linux内核开发领域,Rust语言正逐渐成为C语言的有力补充。本文将详细介绍如何在现有的C内核模块(如KVM驱动)中集成Rust代码,并解决实际开发中遇到的各种技术挑战。
Rust与C内核模块的互操作性
Linux内核模块传统上使用C语言开发,但随着Rust-for-Linux项目的推进,开发者现在可以在内核模块中混合使用Rust和C代码。这种混合编程模式的关键在于正确处理两种语言间的互操作。
要在C内核模块中调用Rust函数,需要遵循特定的导出规则。Rust函数必须使用#[no_mangle]
和extern "C"
属性修饰,以确保函数名在编译后保持不变,并且使用C语言的调用约定。
常见编译问题及解决方案
在集成过程中,开发者可能会遇到"unknown feature 'new_uninit'"的错误。这是因为Rust编译器需要特定的特性支持才能正确编译内核代码。解决方法是在Rust文件中添加use kernel;
语句,这会间接引入liballoc依赖,从而启用所需的编译器特性。
开发环境配置
为了获得更好的开发体验,需要配置rust-analyzer以支持自定义的Rust文件。这需要修改项目中的rust-analyzer生成脚本,使其能够识别新增的Rust模块并生成对应的配置项。配置完成后,开发者可以使用make LLVM=1 rust-analyzer
命令启用完整的IDE支持。
自动生成C语言绑定的挑战
目前Rust-for-Linux项目主要支持从C头文件生成Rust绑定的功能,反向生成C头文件的功能尚未内置。对于需要在C代码中调用Rust函数的情况,开发者可以考虑使用cbindgen等工具来生成必要的C语言头文件。
实际应用示例
以下是一个简单的Rust函数示例,展示了如何从C内核模块调用Rust代码:
#![allow(unused_imports)]
#![allow(missing_docs)]
use kernel::prelude::*;
const __LOG_PREFIX: &[u8] = b"KVM: ";
#[no_mangle]
pub extern "C" fn hello_from_rust() {
pr_info!("Hello from rust!");
}
这个示例演示了基本的日志打印功能,通过pr_info!
宏输出信息到内核日志。函数使用#[no_mangle]
和extern "C"
修饰,确保可以被C代码直接调用。
总结
Rust-for-Linux项目为内核开发带来了新的可能性,通过合理的集成方式,开发者可以在保持现有C代码的基础上逐步引入Rust,享受其内存安全和并发编程的优势。随着项目的不断发展,Rust在内核开发中的应用前景将更加广阔。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









