ArcticInference项目中的Shift Parallelism技术解析
2025-06-03 21:50:56作者:侯霆垣
什么是Shift Parallelism
Shift Parallelism是ArcticInference项目中提出的一种创新的动态推理并行策略,它能够根据实际工作负载在张量并行(Tensor Parallelism, TP)和序列并行(Sequence Parallelism, SP)之间实时切换,从而在单一部署中实现延迟、吞吐量和成本效率的最优平衡。
核心原理
Shift Parallelism的核心思想是根据批处理大小(batch size)动态调整并行策略:
- 小批量处理:当批处理大小小于设定阈值时,系统自动采用张量并行(TP)策略,优先优化输出token的延迟(latency)
- 大批量处理:当批处理大小超过阈值时,系统切换为序列并行(SP)策略,优先优化吞吐量(throughput)和首token时间(time-to-first-token)
这种动态切换的关键在于KV缓存不变性(KV cache invariance),只要保持TP×SP=P(总并行度),KV缓存的布局在不同并行模式间就能保持一致,从而实现无缝切换。
技术优势
相比传统静态并行策略,Shift Parallelism具有以下显著优势:
- 自适应优化:根据实际流量自动选择最优并行模式,无需人工干预
- 资源高效利用:最大化GPU利用率,避免资源浪费
- 简化部署:单一部署即可应对不同负载场景,无需维护多个配置
- 成本效益:在保证性能的同时降低运营成本
配置参数详解
要启用Shift Parallelism,需要配置以下关键参数:
--enable-shift-parallel:启用Shift Parallelism功能--shift-parallel-threshold:设置模式切换的批处理大小阈值(默认256)--tensor-parallel-size:设置TP并行度--ulysses-sequence-parallel-size:设置SP并行度
需要注意的是,TP和SP的乘积必须等于可用GPU总数,这是保证KV缓存一致性的必要条件。
实际应用示例
假设我们有以下环境配置:
- 8个GPU节点
- 模型需要2个GPU的基本容量
- 使用Llama-3.3-70B-Instruct模型
典型的配置方式为:
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3.3-70B-Instruct \
--enable-shift-parallel \
--tensor-parallel-size 4 \
--ulysses-sequence-parallel-size 2 \
--shift-parallel-threshold 256
这种配置下:
- 总并行度TP×SP=4×2=8,匹配GPU数量
- 当批处理大小≤256时,使用TP=8(4×2)模式
- 当批处理大小>256时,使用SP=4和TP=2的组合模式
性能调优建议
- 阈值选择:默认阈值256适用于大多数场景,但可以根据具体应用特点调整
- 延迟敏感型应用可适当降低阈值
- 吞吐量优先应用可适当提高阈值
- 资源分配:确保TP设置满足模型最小GPU需求
- 监控调整:初期建议监控系统行为,根据实际表现微调参数
适用场景
Shift Parallelism特别适合以下场景:
- 流量波动大的在线服务
- 需要同时兼顾延迟和吞吐量的应用
- 资源有限但需要高效利用GPU的环境
- 需要简化部署和运维的AI服务
总结
ArcticInference的Shift Parallelism技术通过创新的动态并行策略,有效解决了传统静态并行方法在应对多变工作负载时的局限性。它不仅提升了系统整体效率,还简化了部署和运维复杂度,是大模型推理领域的一项重要技术进步。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669