首页
/ PyTorch TorchChat项目中torch.load的weights_only参数默认值变更解析

PyTorch TorchChat项目中torch.load的weights_only参数默认值变更解析

2025-06-20 15:08:12作者:裴锟轩Denise

背景介绍

在PyTorch生态系统中,模型序列化与反序列化是深度学习工作流中的关键环节。torch.load作为PyTorch的核心函数之一,负责将保存在文件中的模型或张量数据加载回内存。近期PyTorch社区做出了一个重要变更:从PyTorch 2.6版本开始,torch.load函数的weights_only参数默认值将从False改为True。

变更内容详解

weights_only参数控制着torch.load函数的安全级别。当设置为True时,加载器仅允许加载包含张量数据的state_dict,而禁止执行任意代码。这一变更显著提升了模型加载过程的安全性,防止了潜在的安全风险。

在PyTorch TorchChat项目中,这一变更可能影响所有未显式设置weights_only参数的torch.load调用。特别是在分布式训练检查点加载等场景中,如果加载的对象不仅仅是纯张量数据,就可能引发兼容性问题。

技术影响分析

TorchChat项目中的分布式检查点加载功能直接使用了torch.load来恢复训练状态。在默认值变更后,如果检查点文件中包含非张量数据(如自定义对象、复杂数据结构等),这些调用将无法正常工作。

项目维护者需要全面检查所有torch.load调用点,确保它们要么:

  1. 确实只加载纯张量数据,与weights_only=True的要求相符
  2. 或者显式设置weights_only=False(需评估安全风险)

解决方案与最佳实践

对于TorchChat项目,推荐采取以下措施:

  1. 全面检查:检查项目中所有torch.load调用,确认加载内容的性质
  2. 显式参数设置:即使当前行为符合预期,也建议显式设置weights_only参数,提高代码可读性
  3. 风险评估:对于必须使用weights_only=False的场景,需进行严格的风险评估
  4. 版本兼容:考虑为不同PyTorch版本提供兼容性处理

未来展望

这一变更反映了PyTorch社区对安全性的日益重视。作为依赖PyTorch的项目,TorchChat需要持续关注上游的核心变更,及时调整代码实现。同时,这也提醒开发者在模型序列化时应该更加规范,尽可能使用纯张量格式保存关键数据。

通过主动适应这一变更,TorchChat项目不仅能保持与最新PyTorch版本的兼容性,还能为用户提供更安全可靠的模型加载体验。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
981
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
932
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0